a^2 +16a+b^2+6b+73
Viết mỗi biểu thức sau dưới dạng tổng hai bình phương
a)M=2x^2+2y^2
b)N=a^2+16a+b^2+6b+73
a) \(M=2x^2+2y^2\)
\(=2x^2+2y^2+2xy-2xy\)
\(=x^2+2xy+y^2+x^2-2xy+y^2\)
\(\Rightarrow M=\left(x+y\right)^2+\left(x-y\right)^2\)
b) \(N=a^2+16a+b^2+6b+73\)
\(=a^2+16a+64+b^2+6b+9\)
\(=\left(a+8\right)^2+\left(b+3\right)^2\)
a)\(\sqrt{4\left(a-3\right)^2}vớia\ge3\)
b)\(\sqrt{a^2\left(a+1\right)^2}vớia>0\)
c)\(\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}vớia< 0,b\ne0\)
a) \(\sqrt{4\left(a-3\right)^2}=2\left(a-3\right)=2a-6\)
b) \(\sqrt{a^2\left(a+1\right)^2}=a\left(a+1\right)=a^2+a\)
c) \(\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\dfrac{1}{\sqrt{8}\left|a\right|}=\dfrac{1}{-\sqrt{8}a}=\dfrac{-\sqrt{8}}{8a}\)
a: \(\sqrt{4\left(a-3\right)^2}=2\cdot\left(a-3\right)=2a-6\)
b: \(\sqrt{a^2\left(a+1\right)^2}=a\left(a+1\right)=a^2+a\)
c: \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}=\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\sqrt{\dfrac{2}{16a^2}}=-\dfrac{\sqrt{2}}{4a}\)
B1,Phân tích thành nhân tử bằng nhiều phương pháp
1, -16a^4b^6 -24a^5b^5- 9a^6b^4
2, (a^2+b^2-5)2 -4 (ab+2)^2
3, [4abcd + (a^2+b^2)(c^2+d^2)]^2-4[cd(a^2+b^2)+ab(c^2+d^2)]^2
Phân tích đa thức sau thành nhân tử a) -16a^4b^6 - 24a^5b^5 - 9a^6b^4
b) x^3 - 6x^2y + 12xy^2 - 8x^3
c) x^3 + 3/2x^2 + 3/4x + 1/8
Lời giải:
a.
\(-16a^4b^6-24a^5b^5-9a^6b^4=-[(4a^2b^3)^2+2.(4a^2b^3).(3a^3b^2)+(3a^3b^2)^2]\)
\(=-(4a^2b^3+3a^3b^2)^2=-[a^2b^2(4b+3a)]^2\)
\(=-a^4b^4(3a+4b)^2\)
b.
$x^3-6x^2y+12xy^2-8x^3$
$=x^3-3.x^2.2y+3.x(2y)^2-(2y)^3=(x-2y)^3$
c.
$x^3+\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}$
$=x^3+3.x^2.\frac{1}{2}+3.x.\frac{1}{2^2}+(\frac{1}{2})^3$
$=(x+\frac{1}{2})^3$
a) Ta có: \(-16a^4b^6-24a^5b^5-9a^6b^4\)
\(=-a^4b^4\left(16b^2+24ab+9a^2\right)\)
\(=-a^4b^4\cdot\left(4b+3a\right)^2\)
b) Ta có: \(x^3-6x^2y+12xy^2-8y^3\)
\(=x^3-3\cdot x^2\cdot2y+3\cdot x\cdot\left(2y\right)^2-\left(2y\right)^3\)
\(=\left(x-2y\right)^3\)
c) Ta có: \(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}\)
\(=x^3+3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3\)
\(=\left(x+\dfrac{1}{2}\right)^3\)
\(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}vớia< 0,b\ne0\)
\(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}=\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\sqrt{\dfrac{2}{16a^2}}=-\dfrac{\sqrt{2}}{4a}\)
\(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}=\dfrac{4a^2b^3}{8\sqrt{2}a^3b^3}=\dfrac{1}{2\sqrt{2}a}\)
phân tích các đa thủ sau thành nhân tử
a)\(3x\left(x+7\right)^2-11x^2\left(x+7\right)\)
b)\(-16a^4b^6-24a^5b^5-9a^6b^4\)
a) 3x(x+7)^2 - 11x^2 (x+7)
= (x+7) [3x(x+7) -11x^2]
= (x+7) (3x^2 -11x^2 +21x)
= (x+7) [(3x-11x)(3x+11x) + 21x]
= (x+7) [(-8)x * 14x + 21x]
= (x+7) (-112x^2 + 21x)
= (x+7) * (21-112)x
rut gon
can 16a^4b^6 / can 128a^6b^6 (a<0, bkhac 0)
\(\frac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}=\sqrt{\frac{16a^4b^6}{128a^6b^6}}=\sqrt{\frac{1}{8a^2}}=\frac{\sqrt{1}}{\sqrt{8a^2}}=\frac{1}{\sqrt{2}\sqrt{4}\sqrt{a}}\)
=\(\frac{1}{2\sqrt{2}a}\)
-16a^4b^6-24a^5b^5-9a^6b^4
Cho \(a;b\in N\)Gọi \(A=ƯC\left(19a+6b;16a+5b\right),B=ƯC\left(22a+5b;13a+3b\right)\). Chứng minh A = B.
\(-16a^4b^6-24a^5b^5-9a^6b^4\)
\(-16a^4b^6-24a^5b^5-9a^6b^4\)
\(=-a^4b^4\left(16b^2+24ab+9a^2\right)\)
\(=-a^4b^4\left(3a+4b\right)^2\)
Nhớ tick