Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Phương
Xem chi tiết
Jupiter Nguyễn
Xem chi tiết
phạm nghĩa
8 tháng 5 2016 lúc 16:03

a)Ta có ; để A thuộc N <=> (2n+5) chia hết cho (3n+1)

<=> 3(2n+5) chia hết cho (3n+1)

<=>(6n+15) chia hết cho (3n+1)

<=> (6n + 2 +13) chia hết cho (3n+1)

<=> 13 chia hết cho (3n+1)

=> (3n+1) thuộc Ư(13)

Vì n thuộc N

=> (3n+1) = 1,13

=> n = 0 hoặc 4

b)Trong phần này ta sẽ áp dung 1 tính chất sau:

a/b < (a+m)/(b+m)      với a<b

Ta thấy :

x/(x+y)  >  x/(x+y+z)

y/(y+z) > y/(x+y+z)

z/(z+x) > z/(x+y+z)

=> A > x/(x+Y+z) + y/(x+y+z) + z/(x+y+z)

=> A>1

Ta thấy :

x/x+y < (x+z)/(x+y+z)

y/y+z < (y+x)/(x+y+z)

z/z+x < (z+y)/(x+y+z)

=> A < (x+z)/(x+y+z) +(y+x)/(x+y+z) +(z+y)/(x+y+z)

=>A< 2(x+y+z)/(x+y+z)

=> A<2

=>1<A<2

=> A ko phải là số nguyên(đpcm)

Võ Trương Anh Thư
Xem chi tiết
thien ty tfboys
30 tháng 5 2015 lúc 21:08

A=(x+y)(x+2y)(x+3y)(x+4y)+y4

A=(x+y)(x+4y).(x+2y)(x+3y)+y4

A=(x2+5xy+4y2)(x2+5xy+6y2)+y4

A=(x2+5xy+ 5y2 - y2 )(x2+5xy+5y2+y2)+y4

A=(x2+5xy+5y2)2-y4+y4

A=(x2+5xy+5y2)2

Do x,y,Z nen x2+5xy+5y2 Z

​A là số chính phương 

Michael Jackson
30 tháng 5 2015 lúc 21:13

a) Ta có: A= (x+y)(x+2y)(x+3y)(x+4y)+y4

                = (x2 + 5xy + 4y2)( x2 + 5xy + 6y2) + y2 
Đặt x2 + 5xy + 5y2 = h ( h thuộc Z):
A = ( h - y2)( h + y2) + y2 = h2 – y2 + y2 = h2 = (x2 + 5xy + 5y2)2
Vì x, y, z  thuộc Z nên xthuộc Z, 5xy thuộc Z, 5y2 thuộc Z . Suy ra x2 + 5xy + 5ythuộc  Z
Vậy A là số chính phương.

 

Thị Lương Hồ
20 tháng 5 2017 lúc 20:57
câu b. n^3+3n^2+2n=n*(n^2+3n+2)=n*(n^2+n+2n+2)=n*(n*(n+1)+2*(n+1)=n*(n+1)*(n+2) Mà n,n+1,n+2 ;a 3 số tự nhiên liên tiếp sẽ có 1 số chẵn chia hết cho 2 =>n*(n+1)*(n+2) chia hết cho 2 n,n+1,n+2 cũng sẽ có 1 số chia hết cho 3 =>n*(+1)*(n+2) chia hết cho 3 Mà (2,3)=1=> n*(n+1)*(n+2) chia hết cho 2*3 Lúc đó n^3+3n^2+2n
Hoang Yen Pham
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 9 2021 lúc 18:24

\(A=\left[\left(x+y\right)\left(x+4y\right)\right]\left[\left(x+2y\right)\left(x+3y\right)\right]+y^4\\ A=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\\ A=\left(x^2+5xy+5y^2-y^2\right)\left(x^2+5xy+5y^2+y^2\right)+y^4\\ A=\left(x^2+5xy+5y^2\right)^2-y^4+y^4=\left(x^2+5xy+5y^2\right)^2\left(Đpcm\right)\)

ngô đăng khôi
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
22 tháng 10 2020 lúc 20:28

N = ( x - y )( x - 2y )( x - 3y )( x - 4y ) + y4

= [ ( x - y )( x - 4y ) ][ ( x - 2y )( x - 3y ) ] + y4

= ( x2 - 5xy + 4y2 )( x2 - 5xy + 6y2 ) + y4

Đặt t = x2 - 5xy + 5y2

N = ( t - y2 )( t + y2 ) + y4

    = t2 - y4 + y4

    = t2 = ( x2 - 5xy + 5y2 )2

Vì x, y thuộc Z => x2 thuộc Z ; -5xy thuộc Z ; 5y2 thuộc Z

=> ( x2 - 5xy + 5y2 )là một số chính phương

=> đpcm

Khách vãng lai đã xóa
Nobi Nobita
22 tháng 10 2020 lúc 20:50

\(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4\)

\(=\left(x-y\right)\left(x-4y\right)\left(x-2y\right)\left(x-3y\right)+y^4\)

\(=\left(x^2-5xy+4y^2\right)\left(x^2-5xy+6y^2\right)+y^4\)

Đặt \(x^2-5xy+5y^2=t\)

\(\Rightarrow\left(t-y^2\right)\left(t+y^2\right)+y^4=t^2-y^4+y^4=t^2\)

\(=\left(x^2-5xy+5y^2\right)^2\)

Vì \(x,y\inℤ\)\(\Rightarrow\left(x^2-5xy+5y^2\right)^2\)là số chính phương

hay \(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4\)là số chính phương ( đpcm )

Khách vãng lai đã xóa
ngô đăng khôi
24 tháng 10 2020 lúc 20:52

thanhs

Khách vãng lai đã xóa
Nguyen Linh Nhi
Xem chi tiết
Thắng Nguyễn
10 tháng 4 2016 lúc 10:56

ta có:\(A=\frac{8^9+12}{8^9+7}=\frac{8^9+7+5}{8^9+7}=\frac{8^9+7}{8^9+7}+\frac{5}{8^9+7}=1+\frac{5}{8^9+7}\)

\(B=\frac{8^{10}+4}{8^{10}-1}=\frac{8^{10}-1+5}{8^{10}-1}=\frac{8^{10}-1}{8^{10}-1}+\frac{5}{8^{10}-1}=1+\frac{5}{8^{10}-1}\)

vì 810-1>89+7

\(\Rightarrow\frac{5}{8^{10}-1}<\frac{5}{8^9+7}\)

\(\Rightarrow1+\frac{5}{8^{10}-1}<1+\frac{5}{8^9+7}\)

=>A<B

Trần Trung Hiếu
12 tháng 5 2016 lúc 0:46

Chưa nghĩ ra...!!!

Trần Trung Hiếu
12 tháng 5 2016 lúc 1:46

Thấy:k^2>k^2-1=(k-1)(k+1) 2^2>1.3; 4^2>3.5;…;〖80〗^2>79.81
〖Suy ra: A〗^2=(1^2.3^2….〖79〗^2)/(2^2.4^2….〖80〗^2 )<(1^2.3^2….〖79〗^2)/(1.3.3.5.5.7….79.81)=1/81
Vậy: A<1/9

Trần Trung Hiếu - Trường THCS Trung Châu - Đan Phượng - TP. Hà Nội

Trịnh Phương Linh
Xem chi tiết
Lê Song Phương
25 tháng 8 2023 lúc 21:35

a) Ta đặt \(P\left(x\right)=x^2+x+1\)

\(P\left(x\right)=x^2+x-20+21\)

\(P\left(x\right)=\left(x+5\right)\left(x-4\right)+21\)

Giả sử tồn tại số tự nhiên \(x\) mà \(P\left(x\right)⋮9\) \(\Rightarrow P\left(x\right)⋮3\). Do \(21⋮3\)  nên \(\left(x+5\right)\left(x-4\right)⋮3\)

Mà 3 là số nguyên tố nên suy ra \(\left[{}\begin{matrix}x+5⋮3\\x-4⋮3\end{matrix}\right.\)

Nếu \(x+5⋮3\) thì suy ra \(x-4=\left(x+5\right)-9⋮3\) \(\Rightarrow\left(x+4\right)\left(x-5\right)⋮9\)

Lại có \(P\left(x\right)⋮9\) nên \(21⋮9\), vô lí.

Nếu \(x-4⋮3\) thì suy ra \(x+5=\left(x-4\right)+9⋮3\) \(\Rightarrow\left(x+4\right)\left(x-5\right)⋮9\)

Lại có \(P\left(x\right)⋮9\) nên \(21⋮9\), vô lí.

Vậy điều giả sử là sai \(\Rightarrow x^2+x+1⋮̸9\)

b) Vì \(x^2+x+1⋮̸9\) nên \(y\le1\Rightarrow y\in\left\{0;1\right\}\)

Nếu \(y=0\Rightarrow x^2+x+1=1\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)

Nếu \(y=1\) \(\Rightarrow x^2+x+1=3\)

\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\)

Vậy ta tìm được các cặp số (x; y) thỏa ycbt là \(\left(0;0\right);\left(1;1\right)\)

Nguyễn Lý Kim Linh
25 tháng 8 2023 lúc 21:44

a) Ta đặt 

(

)
=

2
+

+
1
P(x)=x 
2
 +x+1


(

)
=

2
+


20
+
21
P(x)=x 
2
 +x−20+21


(

)
=
(

+
5
)
(


4
)
+
21
P(x)=(x+5)(x−4)+21

Giả sử tồn tại số tự nhiên 

x mà 

(

)

9
P(x)⋮9 


(

)

3
⇒P(x)⋮3. Do 
21

3
21⋮3  nên 
(

+
5
)
(


4
)

3
(x+5)(x−4)⋮3. 

Mà 3 là số nguyên tố nên suy ra 
[

+
5

3


4

3

  
x+5⋮3
x−4⋮3

 

Nếu 

+
5

3
x+5⋮3 thì suy ra 


4
=
(

+
5
)

9

3
x−4=(x+5)−9⋮3 

(

+
4
)
(


5
)

9
⇒(x+4)(x−5)⋮9

Lại có 

(

)

9
P(x)⋮9 nên 
21

9
21⋮9, vô lí.

Nếu 


4

3
x−4⋮3 thì suy ra 

+
5
=
(


4
)
+
9

3
x+5=(x−4)+9⋮3 

(

+
4
)
(


5
)

9
⇒(x+4)(x−5)⋮9

Lại có 

(

)

9
P(x)⋮9 nên 
21

9
21⋮9, vô lí.

Vậy điều giả sử là sai \Rightarrow x^2+x+1⋮̸9

b) Vì x^2+x+1⋮̸9 nên 


1



{
0
;
1
}
y≤1⇒y∈{0;1}

Nếu 

=
0


2
+

+
1
=
1
y=0⇒x 
2
 +x+1=1



(

+
1
)
=
0
⇔x(x+1)=0


[

=
0
(




)

=

1
(




)
⇔[ 
x=0(nhận)
x=−1(loại)

 

Nếu 

=
1
y=1 


2
+

+
1
=
3
⇒x 
2
 +x+1=3



2
+


2
=
0
⇔x 
2
 +x−2=0


(


1
)
(

+
2
)
=
0
⇔(x−1)(x+2)=0


[

=
1
(




)

=

2
(




)
⇔[ 
x=1(nhận)
x=−2(loại)

 

Vậy ta tìm được các cặp số (x; y) thỏa ycbt là 
(
0
;
0
)
;
(
1
;
1
)
(0;0);(1;1)

Hà Quang Minh đã xóa
Phạm Phương Thảo
Xem chi tiết
Huỳnh Diệu Bảo
31 tháng 1 2017 lúc 19:04

1. ta có:  (a-b) + (b-a) = a-b+b-a = 0
Vậy (a-b) và (b-a) là hai số đối nhau
2.
a, (x-y) + (m-n) = x-y +m - n = x + m - y - n = (x+m) - (y+n)
b, (x-y) - (m-n) = x-y -m +n = x+n -y -m = (x+n) -(y+m)

Trần Thảo Vân
31 tháng 1 2017 lúc 21:44
 Gọi A = a - b và B = b - a, ta có :

A + B = a - b + b - a

A + B= a + (-b) + b + (-a)

A + B= a + (-a) + b + (-b)

A + B = 0 

Vì A + B = 0 mà hai số đối có tổng = 0 nên a - b và b - a là hai số đối nhau.

 a) (x - y) + (m - n)

= x - y + m - n

= x + (-y) + m + (-n)

= (x + m) + (-y) + (-n)

= (x + m) +[- (y + n)]

= (x + m) - (y + n)

b) (x - y) - (m - n)

= x - y - m + n

= x + (-y) + (-m) + n

= (x + n) + (-y) + (-m)

= (x + n) + [- (y + m)]

= (x + n) - (y + m)

Trần Thảo Vân
31 tháng 1 2017 lúc 21:45
 Gọi A = a - b và B = b - a, ta có :

A + B = a - b + b - a 

A + B= a + (-b) + b + (-a) 

A + B= a + (-a) + b + (-b) 

A + B = 0 

Vì A + B = 0 mà hai số đối có tổng = 0 nên a - b và b - a là hai số đối nhau.

 a) (x - y) + (m - n)

= x - y + m - n

= x + (-y) + m + (-n)

= (x + m) + (-y) + (-n)

= (x + m) +[- (y + n)]

= (x + m) - (y + n)

b) (x - y) - (m - n)

= x - y - m + n

= x + (-y) + (-m) + n

= (x + n) + (-y) + (-m)

= (x + n) + [- (y + m)]

= (x + n) - (y + m)

Trịnh Hải Yến
Xem chi tiết
Miu Miu
30 tháng 10 2015 lúc 20:55

=[(x+1)(x+6)][(x+3)(x+4)]+9

Sau khi nhân thì sẽ có kết quả sau : =(x2+7x+6)(x2+7x+12)+9 . Sẽ đặt ẩn phụ là (x2+7x+6) = a . suy ra a2+6a+9=(x+3)rồi lại thay ngược lại thì có kết quả cuối cùng là (x2+7x+9)2=>M là số chính phương 

Hien Pham
Xem chi tiết
Phương Ann
25 tháng 2 2018 lúc 14:32

\(A=y^4+\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)\)

\(=y^4+\left(x^2+5y+4y^2\right)\left(x^2+5y+6y^2\right)\)

Đặt \(x^2+5y+4y^2=a\)

\(\Rightarrow A=y^4+a\left(a+2y^2\right)=y^4+2y^2a+a^2=\left(y^2+a\right)^2\) là 1 số chính phương.

Vậy ta có đpcm.