Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Ngọc Ánh
Xem chi tiết
Dung Ticho
Xem chi tiết
Dương Gia Huệ
Xem chi tiết
tth_new
11 tháng 8 2019 lúc 20:21

A B C H M I K

Không mất tính tổng quát, ta xét M thuộc HC (trường hợp M thuộc HB tương tự)

Tam giác ABC vuông tại A có đường cao AH xuất phát từ đỉnh A nên \(AH=\frac{1}{2}BC\) (1) và AH cũng là đường trung tuyến \(\Rightarrow HC=HB=\frac{1}{2}BC\) (2) và đường phân giác => ^CAH = ^BAH. Từ (1) và (2) suy ra \(\Delta\)AHC vuông cân tại H. Từ đó 

AH = HC và ^ACH = ^HAC = ^BAH. Tới đây tìm cách chứng minh AI = CK(mình chưa biết làm đâu:v). Từ đó suy ra \(\Delta\)HIA = \(\Delta\)HKC. Suy ra ^AHI = ^CHK suy ra ^IHK = ^IHA + ^AHK = ^CHK + ^AHK = 90o => \(\Delta\)IHK vuông tại H (3)

Mặt khác từ  \(\Delta\)HIA = \(\Delta\)HKC suy ra HI =HK suy ra  \(\Delta\)IHK cân tại H (4)

Từ (3) và (4) suy ra đpcm.

P/s: Ko chắc, bác zZz Cool Kid zZz check giúp:v

Huyền Nhi
11 tháng 8 2019 lúc 21:00

làm đoạn tth thiếu nhé:

cm AI=CK

t/g ABC vuông cân tại A => ABC^=45 độ

t/g BIM có I^=90 độ mà ABC^=45 độ => BMI^=45 độ

=> t/g BIM vuông cân tại I => BI=IM 

Mà tứ giác BIAK có I^=A^=K^=90 độ => tứ giác BIAK là HCN => IM=AK=BI

Mà AB=AC

=> AB-BI=AC-AK

=>  AI=CK 

zZz Cool Kid_new zZz
11 tháng 8 2019 lúc 21:00

Chứng minh AI=CK

Ta có:

Tứ giác KMIA có 3 góc vuông nên nó là hình chữ nhật.Khi đó thì AI=KM.(1)

Tam giác KMC có ^K=900,^C=450 nên nó là tam giác vuông cân.

=>KC=KM (2)

Từ (1);(2) suy ra đpcm.

Hân hạnh mời god tth check hộ ạ.Ko chắc lắm đâu nha BÁC.

Lê Phương Trang
Xem chi tiết
Mai Thị Khánh Linh
Xem chi tiết
Phương Uyên Võ Ngọc
Xem chi tiết
Đỗ Thị Dung
28 tháng 4 2019 lúc 22:14

bài 1 đề bài có sai ko?

Phương Uyên Võ Ngọc
29 tháng 4 2019 lúc 22:08

Đề đúng nha bạn

IS
22 tháng 2 2020 lúc 20:03

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

Khách vãng lai đã xóa
nood
Xem chi tiết
pourquoi:)
19 tháng 5 2022 lúc 20:31

a,

Xét tứ giác MEFH, có :

\(\widehat{MEF}=\widehat{EHF}=\widehat{HFM}=90^o\)

=> tứ giác MEFH là hình chữ nhật

=> ME = FH

Trần Tuấn Hoàng
19 tháng 5 2022 lúc 21:42

a) ME⊥AC, FH⊥AC \(\Rightarrow\)ME//FH.

MF⊥BH, EH⊥BH \(\Rightarrow\)MF//EH.

△MEF và △HFE có: \(\widehat{MEF}=\widehat{HFE};\widehat{MFE}=\widehat{HEF};EF\) là cạnh chung.

\(\Rightarrow\)△MEF=△HFE (g-c-g).

\(\Rightarrow ME=FH\)

b) BH//ME \(\Rightarrow\widehat{FMB}=\widehat{ACB}=\widehat{DBM}\)

△DBM và △FMB có: \(\widehat{BDM}=\widehat{MFB};\widehat{DBM}=\widehat{FMB};BM\) là cạnh chung.

\(\Rightarrow\)△DBM=△FMB (ch-gn)

c) \(S_{ABM}+S_{ACN}=S_{ABC}\)

\(\Rightarrow\dfrac{1}{2}\left(MD.AB+ME.AC\right)=S_{ABC}\)

\(\Rightarrow\dfrac{1}{2}.AB\left(MD+ME\right)=S_{ABC}\)

-Do \(S_{ABC},AB\) ko đổi nên \(MD+ME\) cũng ko đổi.

d) BC cắt DK tại N.

Kẻ KG//AB (G thuộc BC).

\(\Rightarrow\left\{{}\begin{matrix}\widehat{ABC}=\widehat{CGK}\\\widehat{ACB}=\widehat{KCG}\end{matrix}\right.\Rightarrow\widehat{CGK}=\widehat{KCG}\)

\(\Rightarrow\)△KCG cân tại K nên \(CK=GK=EH\)

Có: \(BD=MF\) (△DBM=△FMB) ; \(MF=HE\)(△MEF=△HFE)

\(\Rightarrow BD=EH=GK\).

△BDN và △GKN có: \(\widehat{BDN}=\widehat{GKN};\widehat{DBN}=\widehat{KGN};BD=GK\)

\(\Rightarrow\)△BDN=△GKN (g-c-g)

\(\Rightarrow DN=KN\) nên N là trung điểm DK.

\(\Rightarrowđpcm\)

daophanminhtrung
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 3 2022 lúc 22:36

a: Xét ΔAMB và ΔAMC có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó:ΔAMB=ΔAMC

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó:ΔAEM=ΔAFM

Suy ra:ME=MF

hay ΔMEF cân tại M

c: Ta có: AE=AF

ME=MF

Do đó: AM là đường trung trực của FE

hay AM⊥FE

daophanminhtrung
Xem chi tiết
Nguyễn Huy Tú
8 tháng 3 2022 lúc 15:39

a, Xét tam giác AMB và tam giác AMC có 

AM _ chung 

AB = AC

^MAB = ^MAC 

Vậy tam giác AMB = tam giác AMC (c.g.c) 

b, Xét tam giác AEM và tam giác AFM có 

AM _ chung 

^MAE = ^MAF 

Vậy tam giác AEM = tam giác AFM (ch-gn) 

=> AE = AF ( 2 cạnh tương ứng ) 

=> EM = FM ( 2 cạnh tương ứng ) 

Xét tam giác MEF có EM = FM 

Vậy tam giác MEF cân tại M

c, AE/AB = AF/AC => EF // BC 

mà tam giác ABC cân tại A có AM là phân giác 

đồng thời là đường cao 

=> AM vuông BC 

=> AM vuông EF 

ღd̾ươn̾g̾ღh̾i̾ền̾
Xem chi tiết
Nguyễn Ngọc Huy Toàn
9 tháng 2 2022 lúc 21:18

a. Xét tam giác  ABD và tam giác ACD

AB = AC ( ABC cân )

góc B = góc C ( ABC cân )

AD : cạnh chung

Vậy tam giác  ABD = tam giác ACD ( c.g.c )

b. ta có trong tam giác ABC đường trung tuyến cũng là đường cao

=> AD vuông BC

CD = BC : 2 = 12 : 2 =6cm

c.áp dụng định lý pitago vào tam giác vuông ADC 

\(AC^2=AD^2+DC^2\)

\(AD=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)

d.Xét tam giác vuông BDE và tam giác vuông CDF có:

AD = CD ( gt )

góc B = góc C

Vậy tam giác vuông BDE = tam giác vuông CDF ( cạnh huyền . góc nhọn)

=> DE = DF ( 2 cạnh tương ứng )

=> tam giác DEF cân tại D

Minz
9 tháng 2 2022 lúc 21:20

a) Tam giác ABD và tam giác ACD có:

     BD = CD (Vì D là trung điểm của BC)

     góc B = góc C

                              (vì tam giác ABC cân tại A)

     AB = AC

  Do đó: am giác ABD = tam giác ACD (c.g.c)

   Suy ra: Góc ADB = góc ADC (cặp góc t/ứng)

b) Vì góc ADB = góc ADC (cmt) mà góc ADB +  góc ADC 180 độ (2 góc kề bù)

    nên góc ADB = 180 độ / 2 = 90 độ => AD vuông góc với BC

c) Ta có : BD + CD = BC ( Vì D nằm giữa B và C)

                  mà BC = 12 cm

       => CD = 12 /2 = 6 cm

 Vì AD vuông góc với BC nên tam giác ADC vuông tại D 

   => AC2AC2 = AD2AD2 +CD2CD2 (Định lý Pytago)

    => 10^2 = AD ^ 2 + 6 ^2

   => AD^2 = 64

   => AD = 8 (cm) (vì AD > 0 )

 d) bạn c/m cho tam giác DEB = tam giác DFC (cạnh huyền - góc nhọn) nhé

       => DE = DF (cặp cạnh tương ứng) => tam giác DEF cân tại D( đn)