tìm max -3|x-4|+8-3x
Tìm Max
C = -3/x - 4/ + 8 - 3x
Tìm MinA biết :
A=|x+3|+(y-1)^2018-4
Tìm Max C
C=4-|3x-5|-|5y+8|
\(A=\left|x+3\right|+\left(y-1\right)^{2018}-4\)
Vì \(\left|x+3\right|\)và \(\left(y-1\right)^{2018}\)\(\ge0\forall x;y\)
\(\Rightarrow A\ge4\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+3=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy.....
\(C=4-\left|3x-5\right|-\left|5y+8\right|\)
\(C=4-\left(\left|3x-5\right|+\left|5y+8\right|\right)\)
Lí luận như câu a) ta có :
\(C\le4\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3x-5=0\\5y+8=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{3}\\y=\frac{-8}{5}\end{cases}}\)
Vậy,...........
\(A=\left|x+3\right|+\left(y-1\right)^{2018}-4\)
Ta có: \(\hept{\begin{cases}\left|x+3\right|\ge0\forall x\\\left(y-1\right)^{2018}\ge0\forall y\end{cases}}\)
\(\Rightarrow\left|x+3\right|+\left(y-1\right)^{2018}-4\ge-4\forall x;y\)
\(A=-4\Leftrightarrow\hept{\begin{cases}\left|x+3\right|=0\\\left(y-1\right)^{2018}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)
Vậy \(A_{min}=-4\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
\(C=4-\left|3x-5\right|-\left|5y+8\right|\)
Ta có: \(\hept{\begin{cases}\left|3x-5\right|\ge0\forall x\\\left|5y+8\right|\ge0\forall y\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}-\left|3x-5\right|\le0\forall x\\-\left|5y+8\right|\le0\forall y\end{cases}}\)
\(\Rightarrow4-\left|3x-5\right|-\left|5y+8\right|\le4\forall x;y\)
\(C=4\Leftrightarrow\hept{\begin{cases}-\left|3x-5\right|=0\\-\left|5y+8\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x-5=0\\5y+8=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{8}{5}\end{cases}}}\)
Vậy \(C_{max}=4\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{8}{5}\end{cases}}\)
Tham khảo nhé~
Ta có: \(\hept{\begin{cases}\left|x+3\right|\ge0\forall x\\\left(y-1\right)^{2018}\ge0\forall y\end{cases}}\)
\(\Rightarrow\left|x+3\right|+\left(y-1\right)^{2018}\ge0\forall x,y\)
\(\Rightarrow\left|x+3\right|+\left(y-1\right)^{2018}-4\ge-4\forall x,y\)
\(\Rightarrow A\ge-4\)
\(A=-4\Leftrightarrow\hept{\begin{cases}\left|x+3\right|=0\\\left(y-1\right)^{2018}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+3=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)
Vậy MinA=-4\(\Leftrightarrow\)x=-3: y=1
Ta có: \(C=4-\left|3x-5\right|-\left|5y+8\right|\)
\(=4-\left(\left|3x-5\right|+\left|5y+8\right|\right)\)
Vì\(\hept{\begin{cases}\left|3x-5\right|\ge0\forall x\\\left|5y+8\right|\ge0\forall y\end{cases}}\)
\(\Rightarrow\left|3x-5\right|+\left|5y+8\right|\ge0\forall x,y\)
\(\Rightarrow-\left(\left|3x-5\right|+\left|5y+8\right|\right)\le0\forall x,y\)
\(\Rightarrow4-\left(\left|3x-5\right|+\left|5y+8\right|\right)\ge4\forall x,y\)
\(\Rightarrow C\ge4\)
\(C=4\Leftrightarrow\hept{\begin{cases}\left|3x-5\right|=0\\\left|5y+8\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x-5=0\\5y+8=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=\frac{-8}{5}\end{cases}}}\)
Vậy MaxC=4\(\Leftrightarrow\)x=\(\frac{5}{3}\): y=\(\frac{-8}{5}\)
Bài 4:Tìm GTLN,GTNN
a,Min A=√(X-5 ) + 7
b,Max B=8 - √(3x-5)
1: Tìm max: S= -(3x-2)^2-(3x-1)^2
2: S=-x^2-3y^2-2xy+10x+18y+8
2: tìm min max: P=6x-8/x^2+9
3: tìm max : S=-x^2+4x+1/2x^2+6
4 tìm min A= x^6+512/x^2+8
5 tìm min A= 2x^16x+41/x^2-8x+22
6 tìm min A= x^2-4x+1/x^2
7 tìm max A= x/(x+10)^2
8 cho x+y=1, x,y>0 tìm min A=1/x+1/y
Mọi người ơi giải giuos mình với chiều nay mình hk r mà chưa bt cách giải làm sao mn giúp mình với ai đúng mình sẽ tích cho nhé ngay và luôn luôn. Cảm ơn mn nhiều
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
tìm max hoặc min
A=-(x-7)2-888
B=8/3+ |2x-1|+|y-5|
C=(x+3)2+|2y-5|-232
D=21-|3x+5|-|y-1|-(8+z)
a: A=-(x-7)^2-888<=-888
Dấu = xảy ra khi x=7
b: \(B=\left|2x-1\right|+\left|y-5\right|+\dfrac{8}{3}>=\dfrac{8}{3}\)
Dấu = xảy ra khi x=1/2 và y=5
c: \(C=\left(x+3\right)^2+\left|2y-5\right|-232>=-232\)
Dấu = xảy ra khi x=-3 và y=5/2
Tìm Max
C = -3/x - 4/ + 8 - 3x
Tìm max của:
C = \(\frac{x^6+27}{x^4-3x^3+6x^2-9x+9}\)
D = \(\frac{x^6+512}{x^2+8}\)
Tìm max của C=xy biết 3x+5y=12
Tìm GTNN của: C= x^4 -2x^3+3x^2-4x+2021
Tìm GTNN của D(x)=x^4 -x^2+2x+7
Tìm max của C=xy biết 3x+5y=12
Tìm GTNN của: C= x^4 -2x^3+3x^2-4x+2021
Tìm GTNN của D(x)=x^4 -x^2+2x+7
1)TÌM H min = \(\sqrt{x^2+4}+\sqrt{x^2+8x+17}\)
2) tìm G min,max A=3x+x\(\sqrt{5-x^2}\)
3)tìm min,max B=\(\sqrt{5x-x^2}+\sqrt{18+3x-x^2}\)
câu 1
ta có .....
lười viết Min - cốp xki nha
DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)
mà \(3x\ge-3\sqrt{5}\)
mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)
min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)
ta có \(A^2\le25\)và ta cx có \(-5\le A\le5\)
nhưng dễ thấy \(A=-5\)không xảy ra, vô lí nên ...........bạn xem đoạn sau nhé ( tiếp phần kia )