Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Việt Anh 5c
Xem chi tiết
kiraja
Xem chi tiết
Trần Thanh Phương
27 tháng 9 2018 lúc 21:21

\(A=\left|x+3\right|+\left(y-1\right)^{2018}-4\)

Vì \(\left|x+3\right|\)và \(\left(y-1\right)^{2018}\)\(\ge0\forall x;y\)

\(\Rightarrow A\ge4\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+3=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy.....

\(C=4-\left|3x-5\right|-\left|5y+8\right|\)

\(C=4-\left(\left|3x-5\right|+\left|5y+8\right|\right)\)

Lí luận như câu a) ta có :

\(C\le4\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3x-5=0\\5y+8=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{3}\\y=\frac{-8}{5}\end{cases}}\)

Vậy,...........

kudo shinichi
27 tháng 9 2018 lúc 21:30

\(A=\left|x+3\right|+\left(y-1\right)^{2018}-4\)

Ta có: \(\hept{\begin{cases}\left|x+3\right|\ge0\forall x\\\left(y-1\right)^{2018}\ge0\forall y\end{cases}}\)

\(\Rightarrow\left|x+3\right|+\left(y-1\right)^{2018}-4\ge-4\forall x;y\)

\(A=-4\Leftrightarrow\hept{\begin{cases}\left|x+3\right|=0\\\left(y-1\right)^{2018}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)

Vậy \(A_{min}=-4\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

\(C=4-\left|3x-5\right|-\left|5y+8\right|\)

Ta có: \(\hept{\begin{cases}\left|3x-5\right|\ge0\forall x\\\left|5y+8\right|\ge0\forall y\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}-\left|3x-5\right|\le0\forall x\\-\left|5y+8\right|\le0\forall y\end{cases}}\)

\(\Rightarrow4-\left|3x-5\right|-\left|5y+8\right|\le4\forall x;y\)

\(C=4\Leftrightarrow\hept{\begin{cases}-\left|3x-5\right|=0\\-\left|5y+8\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x-5=0\\5y+8=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{8}{5}\end{cases}}}\)

Vậy \(C_{max}=4\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{8}{5}\end{cases}}\)

Tham khảo nhé~

nguyễn minh anh
27 tháng 9 2018 lúc 21:42

Ta có: \(\hept{\begin{cases}\left|x+3\right|\ge0\forall x\\\left(y-1\right)^{2018}\ge0\forall y\end{cases}}\)

\(\Rightarrow\left|x+3\right|+\left(y-1\right)^{2018}\ge0\forall x,y\)

\(\Rightarrow\left|x+3\right|+\left(y-1\right)^{2018}-4\ge-4\forall x,y\)

\(\Rightarrow A\ge-4\)

\(A=-4\Leftrightarrow\hept{\begin{cases}\left|x+3\right|=0\\\left(y-1\right)^{2018}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+3=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)

Vậy MinA=-4\(\Leftrightarrow\)x=-3: y=1

Ta có: \(C=4-\left|3x-5\right|-\left|5y+8\right|\)

\(=4-\left(\left|3x-5\right|+\left|5y+8\right|\right)\)

\(\hept{\begin{cases}\left|3x-5\right|\ge0\forall x\\\left|5y+8\right|\ge0\forall y\end{cases}}\)

\(\Rightarrow\left|3x-5\right|+\left|5y+8\right|\ge0\forall x,y\)

\(\Rightarrow-\left(\left|3x-5\right|+\left|5y+8\right|\right)\le0\forall x,y\)

\(\Rightarrow4-\left(\left|3x-5\right|+\left|5y+8\right|\right)\ge4\forall x,y\)

\(\Rightarrow C\ge4\)

\(C=4\Leftrightarrow\hept{\begin{cases}\left|3x-5\right|=0\\\left|5y+8\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x-5=0\\5y+8=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=\frac{-8}{5}\end{cases}}}\)

Vậy MaxC=4\(\Leftrightarrow\)x=\(\frac{5}{3}\): y=\(\frac{-8}{5}\)

duong duong
Xem chi tiết
Minh Hiếu
18 tháng 9 2021 lúc 5:52

a) Vì \(\sqrt{x-5}\) ≥0

⇒ \(\sqrt{x-5}+7\) ≥ 7

Min A=7⇔x-5=0

             ⇔x=5

Minh Hiếu
18 tháng 9 2021 lúc 5:55

b) Vì \(\sqrt{3x-5}\) ≥0

⇒ 8-\(\sqrt{3x-5}\) ≤8

Max=8⇔3x-5\(=\)0

           ⇔\(x=\dfrac{5}{3}\)

Đào Thu Hà
Xem chi tiết
Steolla
31 tháng 8 2017 lúc 12:21

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

linhtngoc
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 7 2023 lúc 19:19

a: A=-(x-7)^2-888<=-888

Dấu = xảy ra khi x=7

b: \(B=\left|2x-1\right|+\left|y-5\right|+\dfrac{8}{3}>=\dfrac{8}{3}\)

Dấu = xảy ra khi x=1/2 và y=5

c: \(C=\left(x+3\right)^2+\left|2y-5\right|-232>=-232\)

Dấu = xảy ra khi x=-3 và y=5/2

Trương Việt Anh
Xem chi tiết
Phạm Thị Hằng
Xem chi tiết
Hoang Yen Pham
Xem chi tiết
Hoang Yen Pham
Xem chi tiết
Ami Mizuno
17 tháng 7 2021 lúc 9:55

Vũ Thùy Linh
Xem chi tiết
vũ tiền châu
18 tháng 9 2017 lúc 20:40

câu 1 

ta có .....

lười viết Min - cốp xki nha

pham thi thu trang
18 tháng 9 2017 lúc 21:25

DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)

mà \(3x\ge-3\sqrt{5}\)

mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)

min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)

pham thi thu trang
18 tháng 9 2017 lúc 21:52

ta có \(A^2\le25\)và ta cx có \(-5\le A\le5\)

nhưng dễ thấy \(A=-5\)không xảy ra, vô lí nên ...........bạn xem đoạn sau nhé ( tiếp phần kia )