(15-2n)chia hết cho n+1 (n<7;=7)
(6n+9)chia hết cho (4n-1) (n>1;=1)
Tìm số tự nhiên n sao cho:
a) 2n+9 chia hết cho n-3
b) 3n-1 chia hết cho 3-2n
c) 15-4n chia hết cho n
d) n+13 chia hết cho n-5
e) 15-2n chia hết cho n+1
g) 6n+9 chia hết cho 4n-1
Mọi người giải giúp mình với
a)Ta có: 2n+9 chia hết n+3
<=>(2n+9)-2(n+3) chia hết n+3
<=>(2n+9)-(2n+6) chia hết n+3
<=>3 chia hết n+3
<=>n+3 thuộc {1;3}
<=>n=0
Vậy n = 0
b) Ta có 3n-1 chia hết cho 3-2n
=> 6n-2 chia hết cho 3-2n
=> 3(3-2n)-11 chia hết cho 3-2n
=> 11 chia hết cho 3-2n
=> 3-2n là ước của 11 và n là số tự nhiên => 3-2n thuộc {1;11}
• 3-2n=1 => n=1
• 3-2n=11=> n ko là số tự nhiên
Vậy n=1
c) (15 - 4n) chia hết cho n
=> 15 chia hết cho n
=> n ∈ Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
mà n ∈ N và n < 4
=> n = {1; 3}
d) n=7 vì (n+13)chia hết cho (n-5) và n lớn hơn 5
e) 15-2n = 13+ (2-2n) = 13+2(1-n) : n-1 =
=> n-1 là ước dương của 13
=> n-1 = 13 hoặc n-1 = 1 hoặc n = -1 hoặc n=-13
=> n=14 hoặc n= 2 hoặc n=0 howjc n=-12
Mà n thuộc N và n<8 => n=0 hoặc n=2
g)
Vì
Mà 4n - 1 chia 4 dư 3; do
15. Chứng tỏ rằng:
a) (n + 10)(n + 15) chia hết cho 2
b) n(n + 1)(2n + 1) chia hết cho 2 và 3.
15. Chứng tỏ rằng:
a) (n + 10)(n + 15) chia hết cho 2
b) n(n + 1)(2n + 1) chia hết cho 2 và 3.
\(a,\left(n+10\right)\left(n+15\right)\)
Với n lẻ \(\Rightarrow n=2k+1\left(k\in N\right)\)
\(\Rightarrow\left(n+10\right)\left(n+15\right)=\left(2k+11\right)\left(2k+16\right)=2\left(k+8\right)\left(2k+11\right)⋮2\)
Với n chẵn \(\Rightarrow n=2q\left(q\in N\right)\)
\(\Rightarrow\left(n+10\right)\left(n+15\right)=\left(2q+10\right)\left(2q+15\right)=2\left(q+5\right)\left(2q+15\right)⋮2\)
Suy ra đpcm
\(b,\) Với n chẵn \(\Rightarrow n=2k\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)
Với n lẻ \(\Rightarrow n=2q+1\Rightarrow n+1=2q+2=2\left(q+1\right)⋮2\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)
Vậy \(n\left(n+1\right)\left(2n+1\right)⋮2\)
Với \(n=3k\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)
Với \(n=3k+1\Rightarrow2n+1=6k+3=3\left(2k+1\right)⋮3\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)
Với \(n=3k+2\Rightarrow n+1=3\left(k+1\right)⋮3\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)
Vậy \(n\left(n+1\right)\left(2n+1\right)⋮3\)
Suy ra đpcm
1.Tìm n thuộc N biết:
a; n + 3 chia hết cho 7 và n < 50.
b; 16 chia hết cho n - 4.
c; n + 1 chia hết cho 5 và n + 1 chia hết cho 6.
d; 15 chia hết cho 2n -1 và 25 chia hết cho 2n - 1.
tìm n thuộc N
a,15-4n chia hết cho n
b,n+15 chia hết cho n-5
c,19-2n chia hết cho n+1
d,6n+9 chia hết cho 4n-1
Tìm số tự nhiên n, biết:
a, (n+8) chia hết cho (n-1)
b, (2n+7) chia hết cho (n-2)
c, (15-2n) chia hết cho (n+1)
a)\(n+8⋮n-1\)
\(\Leftrightarrow n-1+9⋮n-1\)
\(\Leftrightarrow9⋮n-1\)
\(Do\)\(n\in N\)\(\Rightarrow n-1\inƯ\left(9\right)=\left\{1;3;9\right\}\)
\(\Rightarrow n\in\left\{0;2;8\right\}\)
Các phần khác tương tự
a)\(N\in\left\{0;2;8\right\}\)
k mik nha
Học tốt
^_^
Tìm n thuộc N
1. n+7 chia hết cho n-2
2. 46-2n chia hết cho n
3. 3n+15 chia hết cho n+1
4. 8n-7 chia hết cho 4n +1
5.n2+2n+6 chia hết cho n+2
6. n2+2n+6 chia hết cho n+4
7. 7n chia hết cho n-3
1.=> n+7-(n+2) chia hết cho n+2
=>n+7-n-2 chia hết cho n+2
=>5 chia hết cho n+2
=>n+2 thuộc Ư(5)=1;5
ta có bảng:
n+2 | 1 | 5 |
n | loại | 3 |
Vậy n=3
MÌNH MỚI NGHĨ ĐƯỢC TỚI ĐÂY THÔI XIN LỖI NHÉ
3.3n+15 chia hết cho n+1
=>3n+15-n+1 chia hết cho n+1
=>3n+15-3(n+1) chia hết cho n+1
=>3n+15-3n-3 chia hết cho n+1
=>12 chia hết cho n+1
=>n+1 thuộc Ư(12)=1;2;3;4;6;12
ta có bảng:
n+1 | 1 | 2 | 3 | 4 | 12 |
n | 0 | 1 | 2 | 3 | 11 |
Vậy n thuộc 0;1;2;3;11
Cho n thuộc N.Chứng minh rằng:
a) (n+10)(n+15) chia hết cho 2
b) n(n+1)(2n+1) chia hết cho 6
c) n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc N
a/
+ Nếu n chẵn (n+10) chẵn => n+10 chia hết cho 2 => (n+10)(n+15) chia hết cho 2
+ Nếu n lẻ thì (n+15) chẵn => n+15 chia hết cho 2 => (n+10)(n+15) chia hết cho 2
b/
n(n+1)(2n+1) chi hết cho 6 khi đồng thời chia hết cho 2 và cho 3
+ Nếu n chẵn => n(n+1)(2n+1) chia hết cho 2
+ Nếu n lẻ => n+1 chẵn => n+1 chia hết cho 2 => n(n+1)(2n+1) chia hết cho 2
=> n(n+1)(2n+1) chia hết cho 2 với mọi n
+ Nếu n chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3
+ Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3
+ Nếu n chia 3 dư 1 => n+2 chia hết cho 3 => 2(n+2)=2n+4=2n+1+3 chia hết cho 3 mà 3 chia hết cho 3 => 2n+1 chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3
=> n(n+1)(2n+1) chia hết cho 3 với mọi n
=> n(n+1)(2n+1) chia hết cho 6 vơi mọi n
c/
n(2n+1)(7n+1) chia hết cho 6 khi đồng thời chia hết cho 2 và cho 3
+ Nếu n chẵn => n chia hết cho 2 => n(2n+1)(7n+1) chia hết cho 2
+ Nếu n lẻ => 7n lẻ => 7n+1 chẵn => 7n+1 chia hết cho 2 => n(2n+1)(7n+1) chia hết cho 2
=> n(2n+1)(7n+1) chia hết cho 2 với mọi n
+ Nếu n chia hết cho 3 => n(2n+1)(7n+1) chia hết cho 3
+ Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => 10(n+1)=10n+10=(7n+1)+(3n+9)=(7n+1)+3(n+3) chia hết cho 3
Mà 3(n+3) chia hết cho 3 => 7n+1 chia hết cho 3 => n(2n+1)(7n+1) chia hết cho 3
+ Nếu n chia 3 dư 1 chứng minh tương tự câu (b) => 2n+1 chia hết cho 3 => n(2n+1)(7n+1) chia hết cho 3
=> n(2n+1)(7n+1) chia hết cho 3 với mọi n
=> n(2n1)(7n+1) chia hết cho 6 với mọi n
tìm n thuộc N,chứng minh rằng:
a,(n+10)(n+15)chia hết cho 2
b,n(n+1)(2n+1)chia hết cho 6
c,n(2n+1)(7n+1)chia hết cho 6 (với mọi n thuộc N)
a; (n + 10)(n + 15)
+ Nếu n là số chẵn ta có: n + 10 ⋮ 2 ⇒ (n + 10)(n + 15) ⋮ 2
+ Nếu n là số lẻ ta có: n + 15 là số chẵn
⇒ (n + 15) ⋮ 2 ⇒ (n + 10)(n + 15) ⋮ 2
Từ những lập luận trên ta có:
A = (n + 10)(n + 15) ⋮ 2 ∀ n \(\in\) N
Tìm số tự nhiên n sao cho :
a/ 15 chia hết cho n-1
b/ n+3 chia hết cho n-1
c/ 4n +3 chia hết cho 2n+1
d/ 2n+8 chia hết cho 3n+1
a) n-1={-15,-5,-3,-1,1,3,5,15}
n={0,2,4,6,16}
b) n-1={-4,-2,-1,1,2,4}
n={0,2,3,5}
c)2n+1={-1,1)
n={0,}
a , 15 chia hết cho n-1 : n = 6 , 4 , 16 b , n+3 chia hết cho n-1 : n= 6+3 chia hết 4-1 c , 4n+3chia hết cho 2n+1 : n= 45+3 chia hết 23+1 đ, 2n+8 chia hết cho 3n+1 : n= 25+8 chia hết 32+1