Bài 8: Chia hai lũy thừa cùng cơ số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
An Bùi

15. Chứng tỏ rằng:
a) (n + 10)(n + 15) chia hết cho 2
b) n(n + 1)(2n + 1) chia hết cho 2 và 3.

Nguyễn Hoàng Minh
25 tháng 9 2021 lúc 9:31

\(a,\left(n+10\right)\left(n+15\right)\)

Với n lẻ \(\Rightarrow n=2k+1\left(k\in N\right)\)

\(\Rightarrow\left(n+10\right)\left(n+15\right)=\left(2k+11\right)\left(2k+16\right)=2\left(k+8\right)\left(2k+11\right)⋮2\)

Với n chẵn \(\Rightarrow n=2q\left(q\in N\right)\)

\(\Rightarrow\left(n+10\right)\left(n+15\right)=\left(2q+10\right)\left(2q+15\right)=2\left(q+5\right)\left(2q+15\right)⋮2\)

Suy ra đpcm

\(b,\) Với n chẵn \(\Rightarrow n=2k\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)

Với n lẻ \(\Rightarrow n=2q+1\Rightarrow n+1=2q+2=2\left(q+1\right)⋮2\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)

Vậy \(n\left(n+1\right)\left(2n+1\right)⋮2\)

Với \(n=3k\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)

Với \(n=3k+1\Rightarrow2n+1=6k+3=3\left(2k+1\right)⋮3\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)

Với \(n=3k+2\Rightarrow n+1=3\left(k+1\right)⋮3\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)

Vậy \(n\left(n+1\right)\left(2n+1\right)⋮3\)

Suy ra đpcm

 


Các câu hỏi tương tự
An Bùi
Xem chi tiết
An Bùi
Xem chi tiết
Kurumi Tokisaki
Xem chi tiết
An Bùi
Xem chi tiết
An Bùi
Xem chi tiết
An Bùi
Xem chi tiết
An Bùi
Xem chi tiết
Long thần
Xem chi tiết
An Bùi
Xem chi tiết