\(\left\{{}\begin{matrix}x+2y=m\\2x+5y=1\end{matrix}\right.\)
tìm m để hệ có no duy nhất để |x|=y
tìm m để hệ phương trình \(\left\{{}\begin{matrix}x+y+xy=m+1\\x^2y+y^2x=3m-5\end{matrix}\right.\) có 1 no duy nhất
\(\left\{{}\begin{matrix}2x-y=m+1\\x+y=2m-1\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất (x;y) sao cho `x^2 -2y-1=0`.
\(\left\{{}\begin{matrix}2x-y=m+1\\x+y=2m-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=3m\\2x-y=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=m-1\end{matrix}\right.\)
Theo đề: \(x^2-2y-1=0\)
\(\Leftrightarrow m^2-2\left(m-1\right)-1=0\)
\(\Leftrightarrow m^2-2m+1=0\)
\(\Leftrightarrow\left(m-1\right)^2=0\Leftrightarrow m=1\).
Vậy: \(m=1.\)
\(\left\{{}\begin{matrix}3x+my=5\\x-2y=3\end{matrix}\right.\)
tìm m để hệ có nghiệm duy nhất (x;y) thỏa mãn 2x+y=1
Hệ có nghiệm duy nhất khi: \(\dfrac{3}{1}\ne\dfrac{m}{-2}\Rightarrow m\ne-6\)
Khi đó ta có:
\(\left\{{}\begin{matrix}3x+my=5\\x-2y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}6x+2my=10\\mx-2my=3m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m+6\right)x=3m+10\\y=\dfrac{x-3}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3m+10}{m+6}\\y=\dfrac{x-3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3m+10}{m+6}\\y=\dfrac{-4}{m+6}\end{matrix}\right.\)
\(2x+y=1\Rightarrow\dfrac{2\left(3m+10\right)}{m+6}+\dfrac{-4}{m+6}=1\)
\(\Leftrightarrow\dfrac{6m+16}{m+6}=1\)
\(\Rightarrow6m+16=m+6\)
\(\Rightarrow m=-2\)
\(\left\{{}\begin{matrix}2x+y=m\\3x-2y=5\end{matrix}\right.\) (m tham số)
Tìm m để hệ có nghiệm duy nhất (x;y) thỏa mãn x>0 ; y<0
\(\left\{{}\begin{matrix}2x+y=m\\3x-2y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x+2y=2m\\3x-2y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=2m+5\\y=m-2x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+5}{7}\\y=\dfrac{3m-10}{7}\end{matrix}\right.\)
Để \(x>0;y< 0\Rightarrow\left\{{}\begin{matrix}\dfrac{2m+5}{7}>0\\\dfrac{3m-10}{7}< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m>-\dfrac{5}{2}\\m< \dfrac{10}{3}\end{matrix}\right.\) \(\Rightarrow-\dfrac{5}{2}< m< \dfrac{10}{3}\)
tìm m để hệ pt có 1 no duy nhất \(\left\{{}\begin{matrix}x+y+xy=m+1\\xy\left(x+y\right)=3m-5\end{matrix}\right.\)
Cho hệ phương trình \(\left\{{}\begin{matrix}x+y=m\\x+\left(m+1\right)y=1\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất (x;y) thỏa mãn x+2y>0
\(HPT\Leftrightarrow\left\{{}\begin{matrix}x=m-y\\m-y+ym+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m-y\\ym=1-m\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=m-\dfrac{1-m}{m}=\dfrac{m^2+m-1}{m}\\y=\dfrac{1-m}{m}\end{matrix}\right.\)
\(x+2y>0\\ \Leftrightarrow\dfrac{m^2+m-1}{m}+\dfrac{2-2m}{m}>0\\ \Leftrightarrow\dfrac{m^2-m+1}{m}>0\)
Mà \(m^2-m+1=\left(m-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
Vậy \(m>0\) thỏa đề
Cho hệ phương trình \(\left[{}\begin{matrix}x+y=m\\x+\left(m+1\right)y=1\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất (x;y) thỏa mãn x+2y>0
Cho hệ phương trình \(\left\{{}\begin{matrix}x+y=m\\x+\left(m+1\right)y=1\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất (x;y) thỏa mãn x+2y>0
\(\left\{{}\begin{matrix}x-2y=5\\mx-y=4\end{matrix}\right.\)
1. Tìm m để hệ có nghiệm duy nhất (x,y) trong đó x,y trái dấu
2. Tìm m để hệ có nghiệm duy nhất (x,y) thỏa mãn x=|y|
1: Để hệ có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{-2}{-1}=2\)
=>\(m\ne\dfrac{1}{2}\)
\(\left\{{}\begin{matrix}x-2y=5\\mx-y=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-2y=5\\y=mx-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2\left(mx-4\right)=5\\y=mx-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(1-2m\right)=5-8=-3\\y=mx-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{3}{2m-1}\\y=\dfrac{3m}{2m-1}-4=\dfrac{3m-4\left(2m-1\right)}{2m-1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{3}{2m-1}\\y=\dfrac{-5m+4}{2m-1}\end{matrix}\right.\)
Để x,y trái dấu thì xy<0
=>\(\dfrac{3\left(-5m+4\right)}{\left(2m-1\right)^2}< 0\)
=>-5m+4<0
=>-5m<-4
=>\(m>\dfrac{4}{5}\)
2: Để x=|y| thì \(\dfrac{3}{2m-1}=\left|\dfrac{-5m+4}{2m-1}\right|\)
=>\(\left[{}\begin{matrix}\dfrac{-5m+4}{2m-1}=\dfrac{3}{2m-1}\\\dfrac{-5m+4}{2m-1}=\dfrac{-3}{2m-1}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}-5m+4=3\\-5m+4=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{1}{5}\left(nhận\right)\\m=\dfrac{7}{5}\left(nhận\right)\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất thỏa mãn x, y là số nguyên
\(\left\{{}\begin{matrix}mx-2y=2m-1\\2x-my=9-3m\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m}{2}\ne\dfrac{-2}{-m}\)
=>\(m^2\ne4\)
=>\(m\notin\left\{2;-2\right\}\)
\(\left\{{}\begin{matrix}mx-2y=2m-1\\2x-my=9-3m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2y=mx-2m+1\\2x-my=9-3m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\\2x-m\left(x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\right)=9-3m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\\2x-x\cdot\dfrac{m^2}{2}+m^2-\dfrac{1}{2}m=9-3m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\\x\left(2-\dfrac{m^2}{2}\right)=-m^2+\dfrac{1}{2}m-3m+9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\\x\cdot\dfrac{4-m^2}{2}=-m^2-\dfrac{5}{2}m+9=\dfrac{-2m^2-5m+18}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{-2m^2-5m+18}{4-m^2}=\dfrac{2m^2+5m-18}{m^2-4}\\y=x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{\left(2m+9\right)\left(m-2\right)}{\left(m-2\right)\left(m+2\right)}=\dfrac{2m+9}{m+2}\\y=\dfrac{2m+9}{m+2}\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2m+9}{m+2}\\y=\dfrac{2m^2+9m-2m\left(m+2\right)+m+2}{2\left(m+2\right)}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2m+9}{m+2}\\y=\dfrac{2m^2+10m+2-2m^2-4m}{2\left(m+2\right)}=\dfrac{6m+2}{2\left(m+2\right)}=\dfrac{3m+1}{m+2}\end{matrix}\right.\)
Để x,y nguyên thì \(\left\{{}\begin{matrix}2m+9⋮m+2\\3m+1⋮m+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m+4+5⋮m+2\\3m+6-5⋮m+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5⋮m+2\\-5⋮m+2\end{matrix}\right.\)
=>\(5⋮m+2\)
=>\(m+2\in\left\{1;-1;5;-5\right\}\)
=>\(m\in\left\{-1;-3;3;-7\right\}\)