tìm m để hệ pt có 1 no duy nhất \(\left\{{}\begin{matrix}x+y+xy=m+1\\xy\left(x+y\right)=3m-5\end{matrix}\right.\)
Giải hệ phương trình đối xứng loại 1
1 , \(\left\{{}\begin{matrix}x^3+xy+y^3=3\\2x+xy+2y=-3\end{matrix}\right.\)
2 , \(\left\{{}\begin{matrix}x+y+2xy=2\\x^3+y^3=8\end{matrix}\right.\)
3 , \(\left\{{}\begin{matrix}x^3-y^3=7\\xy\left(x-y\right)=2\end{matrix}\right.\)
4 \(\left\{{}\begin{matrix}x+y+2xy=5\\x^2+y^2+xy=7\end{matrix}\right.\)
giúp mình với mình đang cần gấp
cho hệ \(\left\{{}\begin{matrix}x+xy+y=2m+1\\xy\left(x+y\right)=m^2+m\end{matrix}\right.\)
xác định m để hệ có nghiệm duy nhất
Giải hệ phương trình
a, \(\left\{{}\begin{matrix}\sqrt[4]{x^3-1}+\sqrt{x}=3\\x^2+y^3=82\end{matrix}\right.\) d, \(\left\{{}\begin{matrix}x-\frac{1}{x}=y-\frac{1}{y}\\2y=x^3+1\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\sqrt{x+\frac{1}{y}}+\sqrt{x+y-3}=3\\2x+y+\frac{1}{y}=8\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}\frac{3}{x^2}=2x+y\\\frac{3}{y^2}=2y+x\end{matrix}\right.\)
giải hệ phương trình đối xứng loại 2 sau:
\(\left\{{}\begin{matrix}x^3+y^2=2y\\y^3+x^2=2x\end{matrix}\right.\)
1.\(\left\{{}\begin{matrix}2x^2=y+\dfrac{1}{y^2}\\2y^2=x+\dfrac{1}{x^2}\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}2x+\sqrt{y-1}=\dfrac{5}{2}\\2y+\sqrt{x-1}=\dfrac{5}{2}\end{matrix}\right.\)
tìm a để hệ có nghiệm duy nhất
\(\left\{{}\begin{matrix}x^2+y=axy+1\\y^2+x=axy+1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=1\\x\sqrt{x}+y\sqrt{y}=1-3m\end{matrix}\right.\) Tìm m để hệ có nghiệm
Giải hệ PT: \(\left\{{}\begin{matrix}x^2y^2=2x^2+y\\xy^2+2x^2=1\end{matrix}\right.\)