36-1...=...9
\(\dfrac{......}{9}=\dfrac{4}{36}\)
A, 1 b, 4 c, 9 d,36
36/(1*3*5) + 36/(3*5*7) + 36/(5*7*9) + ... + 36/(25*27*29)
Ta có: \(\frac{1}{\left(2n+1\right)\left(2n+3\right)}-\frac{1}{\left(2n+3\right)\left(2n+5\right)}\)
\(=\frac{2n+5-\left(2n+1\right)}{\left(2n+1\right)\left(2n+3\right)\left(2n+5\right)}\)
\(=\frac{4}{\left(2n+1\right)\left(2n+3\right)\left(2n+5\right)}\)
=>\(\frac{1}{\left(2n+1\right)\left(2n+3\right)\left(2n+5\right)}=\frac14\left(\frac{1}{\left(2n+1\right)\left(2n+3\right)}-\frac{1}{\left(2n+3\right)\left(2n+5\right)}\right)\)
Do đó, ta có:
\(\frac{1}{1\cdot3\cdot5}=\frac14\left(\frac{1}{1\cdot3}-\frac{1}{3\cdot5}\right)\)
\(\frac{1}{3\cdot5\cdot7}=\frac14\left(\frac{1}{3\cdot5}-\frac{1}{5\cdot7}\right)\)
...
\(\frac{1}{25\cdot27\cdot29}=\frac14\left(\frac{1}{25\cdot27}-\frac{1}{27\cdot29}\right)\)
Do đó: \(\frac{1}{1\cdot3\cdot5}+\frac{1}{3\cdot5\cdot7}+\cdots+\frac{1}{25\cdot27\cdot29}=\frac14\left(\frac{1}{1\cdot3}-\frac{1}{3\cdot5}+\frac{1}{3\cdot5}-\frac{1}{5\cdot7}+\cdots+\frac{1}{25\cdot27}-\frac{1}{27\cdot29}\right)\)
\(=\frac14\left(\frac{1}{1\cdot3}-\frac{1}{27\cdot29}\right)\)
=>\(36\left(\frac{1}{1\cdot3\cdot5}+\frac{1}{3\cdot5\cdot7}+\cdots+\frac{1}{25\cdot27\cdot29}\right)=36\cdot\frac14\left(\frac{1}{1\cdot3}-\frac{1}{27\cdot29}\right)\)
=>\(\frac{36}{1\cdot3\cdot5}+\frac{36}{3\cdot5\cdot7}+\cdots+\frac{36}{25\cdot27\cdot29}=9\left(\frac13-\frac{1}{27\cdot29}\right)=3-\frac{1}{3\cdot29}=\frac{3\cdot3\cdot29-1}{3\cdot29}=\frac{260}{87}\)
a)so sánh 9^10 và 8^9+7^9+......2^9+1^9
b)chứng minh:(36^36-9^10) chia hết cho 45
CTR:36/1*3*5+36/3*5*7+36/5*7*9+...+36/25*27*29<3
Tính tổng: A=36/(1*3*5)+36/(3*5*7)+36/(5*7*9)+...+36/(45*47*49)
a) So sánh: \(9^{10}với8^9+7^9+6^9+...+1^9\)
b) Chứng minh: \(\left(36^{36}-9^{10}\right)⋮45\)
Rút gọn phân số :
a) 4/6 ; 12/8 ; 15/25 ; 11/22 ; 36/10 ; 75/36
b) 5/10 ; 12/36 ; 9/72 ; 75/300 ; 15/35 ; 4/100
Mẫu : 9/27 = 9:9/27:9 = 1/3
Tham khảo :
(Tại mik lười ko mún ghi nên bạn tham khảo cái ảnh này nhá)
a) So sánh: 9^10 với \(8^9+7^9+6^9+...+1^9\)
b) Chứng minh: \(\left(36^{36}-9^{10}\right)⋮45\)
a) Ta có:
\(8^9+7^9+6^9+...+1^9\)
\(=\left(8^3+7^3+6^3+...+1^3\right)^2\)
\(=\left(\left(8+7+6+...+2+1\right)^2\right)^2\)
\(=\left(8+7+6+...+2+1\right)^4\)
\(=36^4=9^4.4^4\)
Mà \(9^{10}=9^4.9^6\)
\(\Rightarrow9^4.9^6>9^4.4^4\)
Vậy \(9^{10}>8^9+7^9+6^9+...+1^9\)
b) \(45=5.9\)
Ta có:
\(\left\{{}\begin{matrix}36⋮9\\9⋮9\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}36^{36}⋮9\\9^{10}⋮9\end{matrix}\right.\)\(\Rightarrow\left(36^{36}-9^{10}\right)⋮9\)
Lại có:
\(36\div5\) dư \(1\)
\(9\div5\) dư \(1\)
\(\Rightarrow\left(36^{36}-9^{10}\right)⋮5\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\) và \(\left(9;5\right)=1\)
\(\Rightarrow\left(36^{36}-9^{10}\right)⋮45\) (Đpcm)
Tính bằng cách thuận tiện: 7/9 : 11/36 - 1/3 : 11/36
(7/9-1/3):11/36
=4/9:11/36
=4/9.36/11
x=16/11
CMR
1 )36^36 - 9^10 chia hết 45