Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Ánh
Xem chi tiết
Nguyễn Thị Thu Hiền
Xem chi tiết
Akai Haruma
28 tháng 6 2019 lúc 15:42

Lời giải:

a) ĐK: \(x>0; x\neq 25; x\neq 36\)

PT \(\Rightarrow (\sqrt{x}-2)(\sqrt{x}-6)=(\sqrt{x}-5)(\sqrt{x}-4)\)

\(\Leftrightarrow x-8\sqrt{x}+12=x-9\sqrt{x}+20\)

\(\Leftrightarrow \sqrt{x}=8\Rightarrow x=64\) (thỏa mãn)

Vậy.......

b)

ĐK: \(x\geq \frac{-1}{2}\)

PT \(\Leftrightarrow \sqrt{9(2x+1)}-\sqrt{4(2x+1)}+\frac{1}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow 3\sqrt{2x+1}-2\sqrt{2x+1}+\frac{1}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow \frac{4}{3}\sqrt{2x+1}=4\Leftrightarrow \sqrt{2x+1}=3\)

\(\Rightarrow x=\frac{3^2-1}{2}=4\) (thỏa mãn)

c)

ĐK: \(x\geq 2\)

PT \(\Leftrightarrow \sqrt{4(x-2)}-\frac{1}{2}\sqrt{x-2}+\sqrt{9(x-2)}=9\)

\(\Leftrightarrow 2\sqrt{x-2}-\frac{1}{2}\sqrt{x-2}+3\sqrt{x-2}=9\)

\(\Leftrightarrow \frac{9}{2}\sqrt{x-2}=9\Leftrightarrow \sqrt{x-2}=2\Rightarrow x=2^2+2=6\) (thỏa mãn)

Kayokea
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 7 2023 lúc 22:03

=>\(5\cdot\dfrac{3\sqrt{x-3}}{5}-7\cdot\dfrac{2\sqrt{x-3}}{3}-7\cdot\sqrt{x^2-9}+18\cdot\sqrt{\dfrac{9}{81}\left(x^2-9\right)}=0\)

=>\(3\cdot\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}=7\cdot\sqrt{x^2-9}-18\cdot\dfrac{3}{9}\cdot\sqrt{x^2-9}\)

=>\(-\dfrac{5}{3}\sqrt{x-3}=\sqrt{x^2-9}\)

=>\(\sqrt{x-3}\left(\sqrt{x+3}+\dfrac{5}{3}\right)=0\)

=>x-3=0

=>x=3

Nguyễn Thị Trúc Phượng
Xem chi tiết
alibaba nguyễn
3 tháng 8 2016 lúc 15:44
Đặt √(x-1) = t rồi giải bình thường là ra
Trần Nguyễn Khánh Linh
Xem chi tiết
Trần Hữu Ngọc Minh
21 tháng 10 2017 lúc 18:11

bài 2

ta có \(\left(\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\right)^2\)

\(=\left(\sqrt{a}.\sqrt{\frac{8a^2+1}{a}}+\sqrt{b}.\sqrt{\frac{8b^2+1}{b}}+\sqrt{c}.\sqrt{\frac{8c^2+1}{c}}\right)^2\)\(=\left(A\right)\)

Áp dụng bất đẳng thức Bunhiacopxki ta có;

\(\left(A\right)\le\left(a+b+c\right)\left(8a+\frac{1}{a}+8b+\frac{1}{b}+8c+\frac{8}{c}\right)\)

\(=\left(a+b+c\right)\left(9a+9b+9c\right)=9\left(a+b+c\right)^2\)

\(\Rightarrow3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)(đpcm)

Dấu \(=\)xảy ra khi \(a=b=c=1\)

vũ tiền châu
21 tháng 10 2017 lúc 20:04

câu 1 dễ mà liên hợp đi x=\(\frac{4}{5}\)

khánhchitt3003
22 tháng 10 2017 lúc 20:58

câu hình 

ad bđt svacso

\(\frac{1}{h_a}+\frac{1}{h_b}+\frac{1}{h_b}\ge\frac{9}{h_a+2h_b}\)

tt vs mấy cái còn lại rồi dùng S=p.r

Lê Đức Anh
Xem chi tiết
❤NgocAnh❤
12 tháng 7 2020 lúc 8:09

Bạn vào link này để xem bài làm của mik nha

large_1594515830440.jpg (768×1024)

Khách vãng lai đã xóa
❤NgocAnh❤
12 tháng 7 2020 lúc 8:09

Mik ko gửi đc link , ib riêng nhé

Khách vãng lai đã xóa
Nguyễn Linh Chi
13 tháng 7 2020 lúc 16:58

Câu 1: 

ĐK: x  khác 0 

TH1: x > 0 

\(\frac{x}{\sqrt{x^2+1}}+\frac{1}{2x^2}=2\)

<=> \(\frac{1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{2x^2}=2\)

Đặt: \(\sqrt{1+\frac{1}{x^2}}=t>1\)ta có phương trình: 

\(\frac{1}{t}+\frac{t^2-1}{2}=2\)

<=> \(t^3-5t+2=0\)

<=> \(\)\(t=2\) (  có 3 nghiệm; loại 2 nghiệm vì  t > 1 ) 

Với t = 2 ta có: \(\sqrt{1+\frac{1}{x^2}}=2\Leftrightarrow\frac{1}{x^2}=3\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{\sqrt{3}}\left(tm\right)\\x=-\frac{1}{\sqrt{3}}\left(l\right)\end{cases}}\)

TH2: x < 0 

\(\frac{x}{\sqrt{x^2+1}}+\frac{1}{2x^2}=2\)

<=> \(\frac{-1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{2x^2}=2\)

Đặt: \(\sqrt{1+\frac{1}{x^2}}=t>1\)

Ta có phương trình: \(-\frac{1}{t}+\frac{t^2-1}{2}=2\)<=> \(t=1+\sqrt{2}\)

khi đó: \(\sqrt{1+\frac{1}{x^2}}=1+\sqrt{2}\)

<=> \(1+\frac{1}{x^2}=1+2\sqrt{2}+2\)

<=> \(x^2=\frac{1}{2\sqrt{2}+2}\)

<=> \(x=-\sqrt{\frac{1}{2\sqrt{2}+2}}\)( thỏa mãn) hoặc \(x=\sqrt{\frac{1}{2\sqrt{2}+2}}\) loại 

Kết luận:...

Khách vãng lai đã xóa
Mark Kim
Xem chi tiết
 ღ ๖ۣۜBFF  ๖ۣۜNhi  ღ
2 tháng 7 2019 lúc 19:11

a) \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)

<=> \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9\left(x-1\right)}+24\frac{\sqrt{x-1}}{\sqrt{64}}=-17\)

<=>\(\frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

<=>\(\sqrt{x-1}\left(\frac{1}{2}-\frac{9}{2}+\frac{6}{2}\right)=-17\)

<=>\(\sqrt{x-1}=-17\)

<=>x-1=17

<=>x=18

Vậy pt có nghiệm là x=18

Kiêm Hùng
2 tháng 7 2019 lúc 19:12

\(a.ĐK:x-1\ge0\Leftrightarrow x\ge1\)

\(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)

\(\Leftrightarrow\frac{1}{2}\sqrt{x-1}-\frac{27}{2}\sqrt{x-1}+24\sqrt{\frac{x-1}{64}}=-17\)

\(\Leftrightarrow\sqrt{x-1}\left(\frac{1}{2}-\frac{27}{2}+24\sqrt{\frac{1}{64}}\right)=-17\)

\(\Leftrightarrow\sqrt{x-1}.\left(-10\right)=-17\)

\(\Leftrightarrow\sqrt{x-1}=\frac{-17}{-10}=\frac{17}{10}\)

\(\Leftrightarrow x-1=\left(\frac{17}{10}\right)^2\)

\(\Leftrightarrow x=\frac{289}{100}+1=3,89\left(TM\right)\)

Vậy \(S=\left\{3,89\right\}\)

\(b.ĐK:x^2+2\ge0\)

\(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)

\(\Leftrightarrow9\sqrt{x^2+2}+2\sqrt{x^2+2}-25\sqrt{x^2+2}=-3\)

\(\Leftrightarrow\sqrt{x^2+2}\left(9+2-25\right)=-3\)

\(\Leftrightarrow\sqrt{x^2+2}=\frac{-3}{-14}=\frac{3}{14}\)

\(\Leftrightarrow x^2+2=\left(\frac{3}{14}\right)^2\)

\(\Leftrightarrow x=\sqrt{\frac{9}{196}-2}=\sqrt{-\frac{383}{196}}\left(vl\right)\)

Vậy \(S=\varnothing\)

Mấy câu kia làm tương tự

 ღ ๖ۣۜBFF  ๖ۣۜNhi  ღ
2 tháng 7 2019 lúc 19:23

b)\(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)

<=>\(\sqrt{9\left(x^2+2\right)}+2\sqrt{x^2+2}-\sqrt{25\left(x^2+2\right)}+3=0\)

<=>\(3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}+3=0\)

<=>\(\sqrt{x^2+2}\left(3+2-5\right)=-3\)

<=>0x=-3

Vậy pt vô nghiệm

Ngọc Vĩ
Xem chi tiết
Đặng Minh Triều
4 tháng 2 2016 lúc 13:38

ĐK: x>0

Đặt a=1/x ta được: a>0

\(a+\frac{1}{3}=\sqrt{\frac{1}{9}+a\sqrt{\frac{4}{9}+2a^2}}\)

\(\Leftrightarrow a^2+\frac{1}{9}+\frac{2}{3}a=\frac{1}{9}+a\sqrt{\frac{4}{9}+2a^2}\)

<=>\(a^2+\frac{2}{3}a=a\sqrt{\frac{4}{9}+2a^2}\)

<=>\(a.\left(a+\frac{2}{3}\right)=a\sqrt{\frac{4}{9}+2a^2}\)

<=>\(a+\frac{2}{3}=\sqrt{\frac{4}{9}+2a^2}\)

<=>\(a^2+\frac{4}{9}+\frac{4}{3}a=\frac{4}{9}+2a^2\)

<=>\(a^2-\frac{4}{3}a=0\Leftrightarrow a=0\left(loại\right);a=\frac{4}{3}\)

<=>\(x=\frac{3}{4}\)(loại -3/2)

Vậy x=3/4

Trần Nguyễn Khánh Linh
Xem chi tiết