Bài1: So sánh : 540 và 450
Bài 2: Tìm x € N , biết :
3x + 4×3x+1 = 351
Bài1: Tìm số tự nhiên n, biết:
3 mủ 2. 3 mủ 4. 3 mủ n= 3 mủ 10
Bài 2: Viết tạp hợp các số tự nhiên x, biết:
9<3x bé hơn hoặc bằng 234
Bài3: So sánh
2 mủ 30 và 3 mủ 20
Chữ mủ là có trên đầu ấy, còn dấu bé hơn hoặc bằng thì các bạn biết rồi chứ
32x34x3n=310
3n=310-2-4
3n=34
bài 2:
9<3.x<235
A={4;5;6;...;78}
bài 2 nếu sai thì bảo mk nhé
Bài3:
so sánh 230 và 320
bài 3 chịu ahihi
Bài 1 : 32.34.3n=310
=> 32+4+n = 310
<=> 2+4+n = 10
6+n = 10
n = 10-6
n = 4
Bài 2 : Ta có 9 < 3x \(\le\) 243
=> x = {4,5,...,81}
Bài 3 : 230 và 320
230 = (23)10 = ...6
320 = (32)10 = ...9
Vậy ta có ...6 < ...9 . Nên 230 < 320
bài 1 :tìm x , biết :
(x-7)^ x+1(x-7)^x+11=0
bài 2 :tìm x , biết :
a,|2x-3| > 5 c,|3x-1| ≤ 7 d,|3x-5| + |2x+3| = 7
bài 3 :
a,tính tổng S = 1 + 5^2 + 5^4 + ....... + 5^200.
b,so sánh 2^30 + 3^30 + 4^30 và 3.24^10
1/Tìm x,biết:
a)x+(x+1)+(x+2)+(x+3)+...+(x+99)+(x+100)=5555
b)1+2+3+4+...+x=820
c)3(x+1)=9.27
d)x+2x+3x+...+99x+100x=15150
e)(x+1)+(x+2)+(x+3)+...+(x+100)=205550
f)3x+3x+1+3x+2=351
a)x+(x+1)+(x+2)+(x+3)+...+(x+99)+(x+100)=5555
=> 101x +5050 = 5555
=> 101x = 505
=> x = 505 : 101 = 5
Vậy, x = 5
b)1+2+3+4+...+x=820
=> ( x+1) x :2 = 820
=> (x+1)x = 1640
Mà 1640 = 40 . 41
=> x = 40 ( vì {x+1} - x = 1)
Vậy, x = 40
c) 3x+1 = 9.27=243
=> 3x+1 = 35
=>x + 1 = 5
=> x = 4
Vậy, x=4
d) x+2x+3x+...+99x+100x=15150
=> [( 100 + 1) x 100 :2 ] x = 15150
=> 5050x = 15150
=> x = 15150:5050 = 3
Vậy, x =3
e)(x+1)+(x+2)+(x+3)+...+(x+100)=205550
=> 100x + 5050 = 205550
=> 100x = 205550 - 5050= 200500
=> x = 200500 : 100 = 2005
Vậy, x = 2005
f)3x+3x+1+3x+2=351
=> 3x + 3x . 3 + 3x x 9 = 351
=> 3x ( 1+3+9) = 351
=> 3x . 13 = 351
=> 3x = 351 :13=27 mà 27 = 33
=> x=3
Vậy, x=3
a) \(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5555\)
\(\Rightarrow x+x+1+x+2+x+3+...+x+100=5555\)
\(\Rightarrow101\cdot x+5050=5555\)
\(\Rightarrow101\cdot x=5555-5050\)
\(\Rightarrow101\cdot x=505\)
\(\Rightarrow x=505:101\)
\(\Rightarrow x=5\)
b) \(1+2+3+4+...+x=820\)
\(\Rightarrow\left(x+1\right)\cdot\left[\left(x-1\right):1+1\right]:2=820\)
\(\Rightarrow\left(x+1\right)\cdot\left(x+1-1\right):2=820\)
\(\Rightarrow\left(x+1\right)\cdot x:2=820\)
\(\Rightarrow x\cdot\left(x+1\right)=820\cdot2\)
\(\Rightarrow x\cdot\left(x+1\right)=1640\)
Ta thấy: \(40\cdot41=1640\)
Vậy: \(x=40\)
Bài 1 :tìm x , biết :
(x-7)x+1 - (x-7)x+11 =0
Bài 2 :tìm x , biết :
a,|2x-3| > 5 c,|3x-1| ≤ 7 d,|3x-5| + |2x+3| = 7
Bài 3 :
a,tính tổng S = 1 + 52 + 54 + ....... + 5200.
b,so sánh 230 + 330 + 430 và 3.2410
\(1,\\ \left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\\ \Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x-7=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\end{matrix}\right.\)
\(2,\\ a,\left|2x-3\right|>5\Leftrightarrow\left[{}\begin{matrix}2x-3< -5\\2x-3>5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\\ b,\left|3x-1\right|\le7\Leftrightarrow\left[{}\begin{matrix}3x-1\le7\\1-3x\le7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\le\dfrac{8}{3}\\x\ge-2\end{matrix}\right.\\ c,\cdot x< -\dfrac{3}{2}\\ \Leftrightarrow5-3x+\left(-2x-3\right)=7\Leftrightarrow2-5x=7\Leftrightarrow x=-1\left(ktm\right)\\ \cdot-\dfrac{3}{2}\le x\le\dfrac{5}{3}\\ \Leftrightarrow\left(5-3x\right)+\left(2x+3\right)=7\Leftrightarrow8-x=7\Leftrightarrow x=1\left(tm\right)\\ \cdot x>\dfrac{5}{3}\\ \Leftrightarrow\left(3x-5\right)+\left(2x+3\right)=7\Leftrightarrow5x-2=7\Leftrightarrow x=\dfrac{9}{5}\left(tm\right)\\ \Leftrightarrow S=\left\{1;\dfrac{9}{5}\right\}\)
Bài1: Thực hiện phép tính
a) 2x(3x2 – 5x + 3) b) - 2x ( x2 + 5x+3)
Bài 4: Tìm x, biết.
a/ 3x + 2(5 – x) = 0 b/ x(2x – 1)(x + 5) – (2x2 + 1)(x + 4,5) = 3,5
c/ 3x2 – 3x(x – 2) = 36.
II. PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
Bài1: Phân tích đa thức thành nhân tử.
a/ 14x2y – 21xy2 + 28x2y2 b/ x(x + y) – 5x – 5y.
c/ 10x(x – y) – 8(y – x). d/ (3x + 1)2 – (x + 1)2
e/ 5x2 – 10xy + 5y2 – 20z2. f/ x2 + 7x – 8
g/ x3 – x + 3x2y + 3xy2 + y3 – y h/ x2 + 4x + 3.
Bài 1:
a: \(=6x^3-10x^2+6x\)
b: \(=-2x^3-10x^2-6x\)
Bài 4:
a: =>3x+10-2x=0
=>x=-10
c: =>3x2-3x2+6x=36
=>6x=36
hay x=6
Bài 1:
\(a,=6x^3-10x^2+6x\\ b,=-2x^3-10x^2-6x\)
Bài 4:
\(a,\Leftrightarrow3x+10-2x=0\Leftrightarrow x=-10\\ b,\Leftrightarrow x\left(2x^2+9x-5\right)-\left(2x^3+9x^2+x+4,5\right)=3,5\\ \Leftrightarrow2x^3+9x^2-5x-2x^3-9x^2-x-4,5=3,5\\ \Leftrightarrow-6x=8\Leftrightarrow x=-\dfrac{4}{3}\\ c,\Leftrightarrow3x^2-3x^2+6x=36\Leftrightarrow x=6\)
Bài 1:
\(a,=7xy\left(2x-3y+4xy\right)\\ b,=x\left(x+y\right)-5\left(x+y\right)=\left(x-5\right)\left(x+y\right)\\ c,=\left(x-y\right)\left(10x+8\right)=2\left(5x+4\right)\left(x-y\right)\\ d,=\left(3x+1-x-1\right)\left(3x+1+x+1\right)\\ =2x\left(4x+2\right)=4x\left(2x+1\right)\\ e,=5\left[\left(x-y\right)^2-4z^2\right]=5\left(x-y-2z\right)\left(x-y+2z\right)\\ f,=x^2+8x-x-8=\left(x+8\right)\left(x-1\right)\\ g,\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\\ =\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\\ h,=x^2+3x+x+3=\left(x+3\right)\left(x+1\right)\)
Bài1:Rút gọn
a,(4x-5)(3x+2)-(7-3x)(x+2)
b,(-2x+1)(x-5)-3(x-2)(x+1)
c,(x^2-7)(x-5)+(3x^2+5)(2x-4)
d,(x^2+3x-2)(x+4)-4x(x-5)
Bài2:Tìm xbiết
a,(x-4)(x+3)-(x+1)(x-5)=8
b,(3x-2)(x+1)-3x(x+7)=13
c,(x+5)(x-5)-x(x+2)=9
d,(x-1)(x^2+x+1)-x(x^2-3)=1
2:
a: =>x^2+3x-4x-12-(x^2-5x+x-5)=8
=>x^2-x-12-x^2+4x+5=8
=>3x-7=8
=>3x=15
=>x=5
b: =>3x^2+3x-2x-2-3x^2-21x=13
=>-20x=15
=>x=-3/4
c: =>x^2-25-x^2-2x=9
=>-2x=25+9=34
=>x=-17
d: =>x^3-1-x^3+3x=1
=>3x-1=1
=>3x=2
=>x=2/3
Bài 1: So sánh : 540 và 450
Bài 2: Tìm x€N:
3x+ 4×3x+1=351
3x+ 4×3x+1=351
=>3x+4.3x.3=351
=>3x(1+12)=351
=>3x.13=351
=>3x=27
=>3x=33
=>x=3
Bài 2: Tìm \(x\in N\)
\(3^x+4.3^{x+1}=351\)
\(\Leftrightarrow3^x+4.3^x.3=351\)
\(\Leftrightarrow3^x\left(1+4.3\right)=351\)
\(\Leftrightarrow3^x.13=351\)
\(\Leftrightarrow3^x=27\)
\(\Leftrightarrow3^x=3^3\)
\(\Leftrightarrow x=3\)
Vậy x=3
Bài 2: Tìm x \(\in\) N:
3x + 4 . 3x + 1 = 351
3x + 4 . 3x . 3 = 351
3x. 1 + 3x. 12 = 351
3x. (1 + 12) = 351
3x . 13 = 351
3x = 351 : 13
3x = 27
\(\Rightarrow\) 3x = 33
\(\Rightarrow\) x = 3.
Bài 3: Rút gọn biểu thức: a) (a+1)^2-(a-1)^2-3(a+1)(a-1) b) (m^3-m+1)2+(m^2-3)^2-2(m^2-3)(m^3-m+1) Bài 4: Tìm x, biết: a) ( 5x +1)^2 – ( 5x +3)( 5x – 3) = 3 b) (3x-5)(5-3x)+9(x+1)^2=30 c) (x+4)^2-(x+1)(x-1)=16 Bài 5: So sánh hai số A và B: a) A=(3+1)(3^2+1)(3^4+1)(3^8+1)(3^(16)+1) và B=3^(32)-1 b) và A= 2011.2013 và B=2012^2 Bài 6: a) C/ m HĐT : (a+b+ c)^2 = a^2 +b^2 + c^2 +2ab +2ac + 2bc b)Áp dụng: cho x^2 + y^2 + z^2 = 5. Tính giá trị biểu thức: A = ( 2x + 2y – z)^2 + ( 2y + 2z – x)^2 + ( 2z+2x – 2y)^2 Bài 7: Cho 5x^2 + 5y^2 + 8xy - 2x + 2y +2 = 0 Tính giá trị biểu thức B = ( x + y ) ^2018 + ( x -2)^ 2019 + ( y +1)^2020
\(3,\\ a,=a^2+2a+1-a^2+2a-1-3a^2+3=-3a^2+4a+3\\ b,=\left(m^3-m+1-m^2+3\right)^2=\left(m^3-m^2-m+4\right)^2\\ 4,\\ a,\Leftrightarrow25x^2+10x+1-25x^2+9=3\\ \Leftrightarrow10x=-7\Leftrightarrow x=-\dfrac{7}{10}\\ b,\Leftrightarrow-9x^2+30x-25+9x^2+18x+9=30\\ \Leftrightarrow48x=46\Leftrightarrow x=\dfrac{23}{24}\\ c,\Leftrightarrow x^2+8x+16-x^2+1=16\\ \Leftrightarrow8x=-1\Leftrightarrow x=-\dfrac{1}{8}\)
Câu 1: So sánh \(\sqrt{7}+\sqrt{5}\)và 7
Câu 2 : Tìm x biết: (3x-7)2007=(3x-7)2005
(3x - 7)2007 = (3x - 7)2005
=> (3x - 7)2007 - (3x - 7)2005 = 0
=> (3x - 7)2005 [(3x - 7)2 - 1] = 0
=> (3x - 7)2005 = 0 hoặc (3x - 7)2 - 1 = 0
+) (3x - 7)2005 = 0
=> 3x - 7 = 0
=> 3x = 7
=> x = 7/3
+) (3x - 7)2 - 1 = 0
=> (3x - 7)2 = 1
=> 3x - 7 = 1 => 3x = 8 => x = 8/3
3x - 7 = -1 => 3x = 6 => x = 2
Vậy: x \(\in\){-7/3;8/3;2
3x-7=1=>x=2\(\frac{2}{3}\)
3x-7=0=>x=2\(\frac{1}{3}\)