Tính:
a) \(\int\limits^1_{-1}\left(x+2\right)^3dx\); b) \(\int\limits^2_1\dfrac{2}{x^2}dx\); c) \(\int\limits^4_1x^2\sqrt{x}dx\);
d) \(\int\limits^0_{-1}2^{3x+2}dx\); e) \(\int\limits^2_02^x.3^{x+1}dx\); g) \(\int\limits^1_0\dfrac{7^x}{11^x}dx\).
Bài tập: Tính.
b, \(\int\limits^{\dfrac{\pi}{6}}_0cos2xdx\) d, \(\int\limits^2_1\dfrac{dx}{\left(2x-1\right)^2}\)
c, \(\int\limits^1_{-1}\left(2x+1\right)^3dx\)
\(b=\dfrac{1}{2}\int\limits^{\dfrac{\pi}{6}}_0cos2xd\left(2x\right)=\dfrac{1}{2}sin2x|^{\dfrac{\pi}{6}}_0=\dfrac{\sqrt{3}}{4}\)
\(c=\dfrac{1}{2}\int\limits^1_{-1}\left(2x+1\right)^3d\left(2x+1\right)=\dfrac{1}{2}.\dfrac{1}{4}\left(2x+1\right)^4|^1_{-1}=10\)
\(d=\dfrac{1}{2}\int\limits^2_1\dfrac{d\left(2x-1\right)}{\left(2x-1\right)^2}=-\dfrac{1}{2}.\dfrac{1}{\left(2x-1\right)}|^2_1=\dfrac{1}{3}\)
Tính :
a) \(\int\limits^{\dfrac{\pi}{2}}_0\cos2x.\sin^2dx\)
b) \(\int\limits^1_{-1}\left|2^x-2^{-x}\right|dx\)
c) \(\int\limits^2_1\dfrac{\left(x+1\right)\left(x+2\right)\left(x+3\right)}{x^2}dx\)
d) \(\int\limits^2_0\dfrac{1}{x^2-2x-3}dx\)
e) \(\int\limits^{\dfrac{\pi}{2}}_0\left(\sin x+\cos x\right)^2dx\)
g) \(\int\limits^{\pi}_0\left(x+\sin x\right)^2dx\)
a)
Ta có:
∫π20cos2xsin2xdx=12∫π20cos2x(1−cos2x)dx=12∫π20[cos2x−1+cos4x2]dx=14∫π20(2cos2x−cos4x−1)dx=14[sin2x−sin4x4−x]π20=−14.π2=−π8∫0π2cos2xsin2xdx=12∫0π2cos2x(1−cos2x)dx=12∫0π2[cos2x−1+cos4x2]dx=14∫0π2(2cos2x−cos4x−1)dx=14[sin2x−sin4x4−x]0π2=−14.π2=−π8
b)
Ta có: Xét 2x – 2-x ≥ 0 ⇔ x ≥ 0.
Ta tách thành tổng của hai tích phân:
∫1−1|2x−2−x|dx=−∫0−1(2x−2−x)dx+∫10(2x−2−x)dx=−(2xln2+2−xln2)∣∣0−1+(2xln2+2−xln2)∣∣10=1ln2∫−11|2x−2−x|dx=−∫−10(2x−2−x)dx+∫01(2x−2−x)dx=−(2xln2+2−xln2)|−10+(2xln2+2−xln2)|01=1ln2
c)
∫21(x+1)(x+2)(x+3)x2dx=∫21x3+6x2+11x+6x2dx=∫21(x+6+11x+6x2)dx=[x22+6x+11ln|x|−6x]∣∣21=(2+12+11ln2−3)−(12+6−6)=212+11ln2∫12(x+1)(x+2)(x+3)x2dx=∫12x3+6x2+11x+6x2dx=∫12(x+6+11x+6x2)dx=[x22+6x+11ln|x|−6x]|12=(2+12+11ln2−3)−(12+6−6)=212+11ln2
d)
∫201x2−2x−3dx=∫201(x+1)(x−3)dx=14∫20(1x−3−1x+1)dx=14[ln|x−3|−ln|x+1|]∣∣20=14[1−ln2−ln3]=14(1−ln6)∫021x2−2x−3dx=∫021(x+1)(x−3)dx=14∫02(1x−3−1x+1)dx=14[ln|x−3|−ln|x+1|]|02=14[1−ln2−ln3]=14(1−ln6)
e)
∫π20(sinx+cosx)2dx=∫π20(1+sin2x)dx=[x−cos2x2]∣∣π20=π2+1∫0π2(sinx+cosx)2dx=∫0π2(1+sin2x)dx=[x−cos2x2]|0π2=π2+1
g)
I=∫π0(x+sinx)2dx∫π0(x2+2xsinx+sin2x)dx=[x33]∣∣π0+2∫π0xsinxdx+12∫π0(1−cos2x)dxI=∫0π(x+sinx)2dx∫0π(x2+2xsinx+sin2x)dx=[x33]|0π+2∫0πxsinxdx+12∫0π(1−cos2x)dx
Tính :J=∫π0xsinxdxJ=∫0πxsinxdx
Đặt u = x ⇒ u’ = 1 và v’ = sinx ⇒ v = -cos x
Suy ra:
J=[−xcosx]∣∣π0+∫π0cosxdx=π+[sinx]∣∣π0=πJ=[−xcosx]|0π+∫0πcosxdx=π+[sinx]|0π=π
Do đó:
I=π33+2π+12[x−sin2x2]∣∣π30=π33+2π+π2=2π3+15π6
Hãy chỉ ra các kết quả đúng trong các kết quả sau :
a) \(\int\limits^1_0x^n\left(1-x\right)^mdx=\int\limits^1_0x^m\left(1-x\right)^ndx;m,n\in\mathbb{N}^{\circledast}\)
b) \(\int\limits^1_{-1}\dfrac{t^2}{e^t+1}dx=\int\limits^1_0t^2dt\)
c) \(\int\limits^1_0\sin^3x\cos xdx=\int\limits^1_0t^3dt\)
Tính các tích phân sau :
a) \(\int\limits^{\dfrac{\pi}{4}}_0\cos2x.\cos^2xdx\)
b) \(\int\limits^1_{\dfrac{1}{2}}\dfrac{e^x}{e^{2x}-1}dx\)
c) \(\int\limits^1_0\dfrac{x+2}{x^2+2x+1}\ln\left(x+1\right)dx\)
d) \(\int\limits^{\dfrac{\pi}{4}}_0\dfrac{x\sin x+\left(x+1\right)\cos x}{x\sin x+\cos x}dx\)
a)
Ta có \(A=\int ^{\frac{\pi}{4}}_{0}\cos 2x\cos^2xdx=\frac{1}{4}\int ^{\frac{\pi}{4}}_{0}\cos 2x(\cos 2x+1)d(2x)\)
\(\Leftrightarrow A=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos x(\cos x+1)dx=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos xdx+\frac{1}{8}\int ^{\frac{\pi}{2}}_{0}(\cos 2x+1)dx\)
\(\Leftrightarrow A=\frac{1}{4}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin x+\frac{1}{16}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin 2x+\frac{1}{8}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|x=\frac{1}{4}+\frac{\pi}{16}\)
b)
\(B=\int ^{1}_{\frac{1}{2}}\frac{e^x}{e^{2x}-1}dx=\frac{1}{2}\int ^{1}_{\frac{1}{2}}\left ( \frac{1}{e^x-1}-\frac{1}{e^x+1} \right )d(e^x)\)
\(\Leftrightarrow B=\frac{1}{2}\left.\begin{matrix} 1\\ \frac{1}{2}\end{matrix}\right|\left | \frac{e^x-1}{e^x+1} \right |\approx 0.317\)
c)
Có \(C=\int ^{1}_{0}\frac{(x+2)\ln(x+1)}{(x+1)^2}d(x+1)\).
Đặt \(x+1=t\)
\(\Rightarrow C=\int ^{2}_{1}\frac{(t+1)\ln t}{t^2}dt=\int ^{2}_{1}\frac{\ln t}{t}dt+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)
\(=\int ^{2}_{1}\ln td(\ln t)+\int ^{2}_{1}\frac{\ln t}{t^2}dt=\frac{\ln ^22}{2}+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)
Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=\frac{dt}{t^2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=\frac{-1}{t}\end{matrix}\right.\Rightarrow \int ^{2}_{1}\frac{\ln t}{t^2}dt=\left.\begin{matrix} 2\\ 1\end{matrix}\right|-\frac{\ln t+1}{t}=\frac{1}{2}-\frac{\ln 2 }{2}\)
\(\Rightarrow C=\frac{1}{2}-\frac{\ln 2}{2}+\frac{\ln ^22}{2}\)
d)
\(D=\int ^{\frac{\pi}{4}}_{0}\frac{x\sin x+(x+1)\cos x}{x\sin x+\cos x}dx=\int ^{\frac{\pi}{4}}_{0}dx+\int ^{\frac{\pi}{4}}_{0}\frac{x\cos x}{x\sin x+\cos x}dx\)
Ta có:
\(\int ^{\frac{\pi}{4}}_{0}dx=\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|x=\frac{\pi}{4}\)
\(\int ^{\frac{\pi}{4}}_{0}\frac{x\cos xdx}{x\sin x+\cos x}=\int ^{\frac{\pi}{4}}_{0}\frac{d(x\sin x+\cos x)}{x\sin x+\cos x}=\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\ln |x\sin x+\cos x|\)
\(=\ln|\frac{\pi\sqrt{2}}{8}+\frac{\sqrt{2}}{2}|\)
Suy ra \(D=\frac{\pi}{4}+\ln|\frac{\pi\sqrt{2}}{8}+\frac{\sqrt{2}}{2}|\)
\(\int\limits^1_{\frac{\sqrt{3}}{3}}\frac{\sqrt{\left(1+x^2\right)^5}}{x^8}dx\)
\(\int\limits^1_{\sqrt{ }3}\)\(\sqrt{\left(1+x^2\right)}\)\(dx\)
Tính các tích phân sau đây :
a) \(\int\limits^{\dfrac{\pi}{2}}_0\left(x+1\right)\cos\left(x+\dfrac{\pi}{2}\right)dx\)
b) \(\int\limits^1_0\dfrac{x^2+x+1}{x+1}\log_2\left(x+1\right)dx\)
c) \(\int\limits^1_{\dfrac{1}{2}}\dfrac{x^2-1}{x^4+1}dx\) (đặt \(t=x+\dfrac{1}{x}\) )
d) \(\int\limits^{\dfrac{\pi}{2}}_0\dfrac{\sin3xdx}{3+4\sin x-\cos2x}dx\)
Câu 1: Cho hàm số \(f\left(x\right)\) liên tục trên tập xác định thoả mản \(\int\limits^1_{-1}f\left(x^2\right)dx=2\) và \(\frac{f\left(x\right)}{f’\left(x\right)}=-x\) . Khi này tính \(\int\limits^e_1f\left(x\right)dx\)
a) -1
b) 0
c) 2
d) Đáp án khác
1, I = \(\int\limits^1_0\dfrac{2x+1}{x^2+x+1}dx\)
2,\(\int\limits^{\dfrac{1}{2}}_0\dfrac{5xdx}{\left(1-x^2\right)^3}\)
3, \(\int\limits^1_0\dfrac{2x}{\left(x+1\right)^3}dx\)
4, \(\int\limits^1_0\dfrac{4x-2}{\left(x^2+1\right)\left(x+2\right)}dx\)
5, \(\int\limits^1_0\dfrac{x^2dx}{x^6-9}\)
6, \(\int\limits^2_1\dfrac{2x-1}{x^2\left(x+1\right)}dx\)
1/ \(I=\int\limits^1_0\dfrac{2x+1}{x^2+x+1}dx=\int\limits^1_0\dfrac{d\left(x^2+x+1\right)}{x^2+x+1}=ln\left|x^2+x+1\right||^1_0=ln3\)
2/ \(\int\limits^{\dfrac{1}{2}}_0\dfrac{5x}{\left(1-x^2\right)^3}dx=-\dfrac{5}{2}\int\limits^{\dfrac{1}{2}}_0\dfrac{d\left(1-x^2\right)}{\left(1-x^2\right)^3}=\dfrac{5}{4}\dfrac{1}{\left(1-x^2\right)^2}|^{\dfrac{1}{2}}_0=\dfrac{35}{36}\)
3/ \(\int\limits^1_0\dfrac{2x}{\left(x+1\right)^3}dx\Rightarrow\) đặt \(x+1=t\Rightarrow x=t-1\Rightarrow dx=dt;\left\{{}\begin{matrix}x=0\Rightarrow t=1\\x=1\Rightarrow t=2\end{matrix}\right.\)
\(I=\int\limits^2_1\dfrac{2\left(t-1\right)dt}{t^3}=\int\limits^2_1\left(\dfrac{2}{t^2}-\dfrac{2}{t^3}\right)dt=\left(\dfrac{-2}{t}+\dfrac{1}{t^2}\right)|^2_1=\dfrac{1}{4}\)
4/ \(\int\limits^1_0\dfrac{4x-2}{\left(x^2+1\right)\left(x+2\right)}dx\)
Kĩ thuật chung là tách và sử dụng hệ số bất định như sau:
\(\dfrac{4x-2}{\left(x^2+1\right)\left(x+2\right)}=\dfrac{ax+b}{x^2+1}+\dfrac{c}{x+2}=\dfrac{\left(a+c\right)x^2+\left(2a+b\right)x+2b+c}{\left(x^2+1\right)\left(x+2\right)}\)
\(\Rightarrow\left\{{}\begin{matrix}a+c=0\\2a+b=4\\2b+c=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=0\\a=-c=2\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^1_0\left(\dfrac{2x}{x^2+1}-\dfrac{2}{x+2}\right)dx=\int\limits^1_0\dfrac{d\left(x^2+1\right)}{x^2+1}-2\int\limits^1_0\dfrac{d\left(x+2\right)}{x+2}=ln\dfrac{8}{9}\)
5/ \(\int\limits^1_0\dfrac{x^2dx}{x^6-9}\Rightarrow\) đặt \(x^3=t\Rightarrow3x^2dx=dt\Rightarrow x^2dx=\dfrac{1}{3}dt;\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=1\Rightarrow t=1\end{matrix}\right.\)
\(I=\dfrac{1}{3}\int\limits^1_0\dfrac{dt}{t^2-9}=\dfrac{1}{18}\int\limits^1_0\left(\dfrac{1}{t-3}-\dfrac{1}{t+3}\right)dt=\dfrac{1}{18}ln\left|\dfrac{t-3}{t+3}\right||^1_0=-\dfrac{1}{18}ln2\)
6/ Tương tự câu 4, sử dụng hệ số bất định ta tách được:
\(\int\limits^2_1\dfrac{2x-1}{x^2\left(x+1\right)}dx=\int\limits^2_1\left(\dfrac{3x-1}{x^2}-\dfrac{3}{x+1}\right)dx=\int\limits^2_1\left(\dfrac{3}{x}-\dfrac{1}{x^2}-\dfrac{3}{x+1}\right)dx\)
\(=\left(3ln\left|\dfrac{x}{x+1}\right|+\dfrac{1}{x}\right)|^2_1=3ln\dfrac{4}{3}-\dfrac{1}{2}\)
Xét tích phân I=\(\int\limits^{\dfrac{\pi}{2}}_0\dfrac{sin2x}{\sqrt{1+cosx}}dx\). Nếu đặt t=\(\sqrt{1+cosx}\), khẳng định nào dưới đây là đúng?
A. I= \(\int\limits^1_{\sqrt{2}}\dfrac{4t^3-4t}{t}dt\)
B. I= \(\int\limits^1_{\sqrt{2}}\dfrac{-4t^3+4t}{t}dt\)
C. I= \(4\int\limits^{\sqrt{2}}_1\left(t^2-1\right)dt\)
D. I= \(-4\int\limits^{\sqrt{2}}_1\left(t^2-1\right)dt\)
Áp dụng phương pháp tính tích phân, hãy tính các tích phân sau :
a) \(\int\limits^{\dfrac{\pi}{2}}_0x\cos2xdx\)
b) \(\int\limits^{\ln2}_0xe^{-2x}dx\)
c) \(\int\limits^1_0\ln\left(2x+1\right)dx\)
d) \(\int\limits^3_2\left|\ln\left(x-1\right)-\ln\left(x+1\right)\right|dx\)
e) \(\int\limits^2_{\dfrac{1}{2}}\left(1+x-\dfrac{1}{x}\right)e^{x+\dfrac{1}{x}}dx\)
g) \(\int\limits^{\dfrac{\pi}{2}}_0x\cos x\sin^2xdx\)
h) \(\int\limits^1_0\dfrac{xe^x}{\left(1+x\right)^2}dx\)
i) \(\int\limits^e_1\dfrac{1+x\ln x}{x}e^xdx\)