\(a^2=1764:b^2với\cdot a\cdot và\cdot b\cdot là\cdot2stn\cdot liên\cdot tiếp\)
Bài 1: cho \(a,b,c\ge0\) và a+b+c=1. Chứng minh rằng :
a,\(\left(1-a\right)\cdot\left(1-b\right)\cdot\left(1-c\right)\ge8\cdot a\cdot b\cdot c\)
b,\(16\cdot a\cdot b\cdot c\ge a+b\)
c,\(\frac{a}{1+a}+\frac{2\cdot b}{2+b}+\frac{3\cdot c}{3+c}\le\frac{6}{7}\)
Bài 2: cho a,b,c>0 và a.b.c=0 chứng minh rằng:
\(\frac{b\cdot c}{a^2\cdot b+a^2\cdot c}+\frac{a\cdot c}{b^2\cdot c+b^2\cdot a}+\frac{a\cdot b}{c^2\cdot a+c^2\cdot b}\ge\frac{3}{2}\)
Bài 1 :
a) Ta có : \(\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Áp dụng bđt Cauchy : \(a+b\ge2\sqrt{ab}\) , \(b+c\ge2\sqrt{bc}\) , \(c+a\ge2\sqrt{ca}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) hay \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge8abc\)
a) Chứng minh biểu thức sau không phụ thuộc vào x:
\(\left(\frac{5\cdot a+b}{5\cdot a^2-a\cdot b}+\frac{5\cdot a-b}{5\cdot a^2-a\cdot b}\right)\div\frac{100\cdot a^2+4\cdot b^2}{25\cdot a^3-a\cdot b^2}\)
b) Tìm x; y sao cho \(x^3+y^3=3\cdot x\cdot y-1\)
Tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). CMR
\(\frac{7\cdot a^3+3\cdot a\cdot b}{11\cdot a^2-8\cdot b^2}=\frac{7\cdot c^2+3\cdot c\cdot d}{11\cdot c^2+8\cdot d^2}\)
Đặt : \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
\(\Rightarrow\frac{7b^2k^2+3bkb}{11b^2k^2-8b^2}=\frac{7d^2k^2+3dkd}{11d^2k^2-8d^2}\)
\(\Rightarrow\frac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\frac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}\)
\(\Rightarrow\frac{7k^2+3k}{11k^2-8}=\frac{7k^2+3k}{11k^2-8}\left(đpcm\right)\)
Tìm a, b, c biết: \(\frac{3\cdot a-2\cdot b}{5}=\frac{2\cdot c-5\cdot a}{3}=\frac{5\cdot b-3\cdot c}{2}\)và a+b+c= -50
Lời giải:
$\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}$
$=\frac{5(3a-2b)}{25}=\frac{3(2c-5a)}{9}=\frac{2(5b-3c)}{4}$
$=\frac{5(3a-2b)+3(2c-5a)+2(5b-3c)}{25+9+4}=\frac{0}{25+9+4}=0$
$\Rightarrow 3a-2b=2c-5a=5b-3c=0$
$\Rightarrow 3a=2b; 2c=5a$
$\Rightarrow \frac{a}{2}=\frac{b}{3}=\frac{c}{5}$
Áp dụng TCDTSBN:
$\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5$
$\Rightarrow a=(-5).2=-10; b=(-5).3=-15; c=(-5).5=-25$
\(\frac{2\cdot a+13\cdot b}{3\cdot a-7\cdot b}=\frac{2\cdot c+13\cdot d}{3\cdot c-7\cdot d}\)
CMR \(\frac{a}{b}=\frac{c}{d}\)
\(\Leftrightarrow\left(2a+13b\right)\left(3c-7d\right)=\left(2c+13d\right)\left(3a-7b\right)\)
\(\Leftrightarrow6ac-14ad+39bc-91bd=6ac-14bc+39ad-91bd\)
\(\Leftrightarrow-14ad+14bc=39ad-39bc\)
\(\Leftrightarrow-14\left(ad-bc\right)=39\left(ad-bc\right)\)
=>ad-bc=0
=>ad=bc
hay a/b=c/d
Tìm 3 số a,b,c biết: \(\frac{3\cdot a-2\cdot b}{5}=\frac{2\cdot c-5\cdot a}{3}=\frac{5\cdot b-3\cdot c}{2}\) và a+b+c=-50
Cho a,b,c>0 và \(a+b+c\le1\) .Chứng minh rằng:
\(\frac{1}{a^2+2\cdot b\cdot c}+\frac{1}{b^2+2\cdot a\cdot c}+\frac{1}{c^2+2\cdot a\cdot b}\)
Đề đúng : Cho a,b,c > 0 và \(a+b+c\le1\)
CMR : \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9\)
Đặt \(x=a^2+2bc,y=b^2+2ac,z=c^2+2ab\)
Áp dụng bđt Bunhiacopxki , ta có: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge\left(\sqrt{\frac{1}{x}.x}+\sqrt{\frac{1}{y}.y}+\sqrt{\frac{1}{z}.z}\right)^2=9\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) hay \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{\left(a+b+c\right)^2}\ge9\)
Ta thấy: \(\left(a^2+2bc\right)+\left(b^2+2ac\right)+\left(c^2+2ab\right)=\left(a+b+c\right)^2\le1\)
Sử dụng Cosi 3 số ta suy ra
\(VT\ge\left[\left(a^2+2bc\right)+\left(b^2+2ac\right)+\left(c^2+2ab\right)\right]\left(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\right)\)
\(\ge3\sqrt[3]{\left(a^2+2bc\right)\left(b^2+2ac\right)\left(c^2+2ab\right)}\cdot3\sqrt[3]{\frac{1}{a^2+2bc}\cdot\frac{1}{b^2+2ac}\cdot\frac{1}{c^2+2ab}}=9\) (Đpcm)
Đẳng thức xảy ra khi\(\begin{cases}a+b+c=1\\a^2+2bc=b^2+2ac=c^2+2ab\end{cases}\)\(\Leftrightarrow a=b=c=\frac{1}{3}\)
mk tìm đc gtln
Đặt a+b=x b+c=y c+a=z
BDT cần cm ⇔(x+y)(y+z)(z+x)xyz (vì a+b+c=1)
Đến đây cô si bình thường ra min bằng 8
B=\(\dfrac{-1^2}{1\cdot2}\cdot\dfrac{-2^2}{2\cdot3}\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\dfrac{-100^2}{100\cdot101}\)
Theo đề bài ta có:
\(B=\dfrac{-1^2.-2^2.....-100^2}{1.2.2.3.....99.100}\)
\(B=\dfrac{1^2.2^2.....100^2}{1.2.2.3.....99.100}\)
\(B=\dfrac{1.1.2.2......100.100}{1.2.2.3.....99.100}\)
\(B=\dfrac{1.2.3......100}{1.2.3.......99}.\dfrac{1.2.3......100}{2.3.4......100}\)
\(B=100\)
Tìm Đa Thức M,N
a, \(3\cdot X^2\cdot y+M-X\cdot Y=10\cdot X^2\cdot Y-2\cdot X\cdot Y\)
b, \(\left(6\cdot X\cdot Y-5\cdot Y^2\right)-N=X^2-2\cdot X\cdot Y+4\cdot Y^2\)
a, 3.x2.y + M - x.y=10x2y - 2xy
(3 x2y-xy) +M= 10x2y -2xy
M=10x2y-2xy+( 3x2y -xy)
M=(10x2y+3x2y)-(2xy+xy)
M=13 x2y-3xy
b,(6xy-5y2)-N=x2-2xy+4 y2
N= 6xy -5y2-( x2-2xy+4y2)
N= 6xy -5y2-x2 +2xy -4y2
N= (6xy +2xy)- (5y2+4y2)-x2
N= 8xy -9y2-x2
hok tốt
boy with luv
kt