giải phương trình sau: \(\left(5x^2-2x+10\right)^2=\left(3x^2+10x-8\right)^2\)
Giải phương trình sau:
\(\left(3x^2+10x-8\right)^2=\left(5x^2-2x+10\right)^2\)
Giúp với ! Mình cần rất gấp
(3x2 + 10x - 8)2 = (5x2 - 2x + 10)2
<=> (3x2 + 10x - 8)2 - (5x2 - 2x + 10)2 = 0
<=> (3x2 + 10x - 8 - 5x2 + 2x - 10)(3x2 + 10x - 8 + 5x2 - 2x + 10) = 0
<=> (-2x2 + 12x - 18)(8x2 + 8x + 2) = 0
<=> -4(x2 - 6x + 9)(4x2 + 4x + 1) = 0
<=> (x - 3)2(2x + 1)2 = 0
<=> \(\orbr{\begin{cases}x-3=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\\x=-\frac{1}{2}\end{cases}}\)
Vậy S = {3; -1/2}
giải các phương trình sau:
a)\(3\left(x^2+x\right)^2-7\left(x^2+x\right)+4=0\)0
b)\(x\left(x+1\right)\left(x^2+x+1\right)=42\)
c)\(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
d)\(\left(5x^2-2x+10\right)^2=\left(3x^2+10x-8\right)^2\)
a) đặt \(\left(x^2+x\right)\)là \(y\)
ta có: \(3y^2-7y+4\)\(=0\)
<=>\(\left(3y-4\right)\left(y-1\right)=0\)
còn lại bạn tự xử nhé
Giải các phương trình sau bằng cách đưa về phương trình tích :
a) \(\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\)
b) \(4x^2-1=\left(2x+1\right)\left(3x-5\right)\)
c) \(\left(x+1\right)^2=4\left(x^2-2x+1\right)\)
d) \(2x^3+5x^2-3x=0\)
a)(2x+1)(3x-2)=(5x-8)(2x+1)
⇔(2x+1)(3x-2)-(5x-8)(2x+1)=0
⇔(2x+1)(3x-2-5x+8)=0
⇔(2x+1)(-2x+6)=0
⇔2x+1=0 hoặc -2x+6=0
1.2x+1=0⇔2x=-1⇔x=-1/2
2.-2x+6=0⇔-2x=-6⇔x=3
phương trình có 2 nghiệm x=-1/2 và x=3
b)4x2-1=(2x+1)(3x-5)
⇔(2x-1)(2x+1)-(2x+1)(3x-5)=0
⇔(2x+1)(2x-1-3x+5)=0
⇔(2x+1)(-x+4)=0
⇔2x+1=0 hoặc -x+4=0
1.2x+1=0⇔2x=-1⇔x=-1/2
2.-x+4=0⇔-x=-4⇔x=4
phương trình có 2 nghiệm x=-1/2 và x=4
BÀI 1: GIẢI CÁC PHƯƠNG TRÌNH SAU
a) \(\left(2x-1\right)^2=49\)
b) \(\left(5x-3\right)^2-\left(4x-7\right)^2=0\)
c) \(\left(2x+7\right)^2-9\left(x+3\right)^2\)
d) \(\left(x+2\right)^2=9\left(x^2-4x+4\right)\)
e) \(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
f) \(\left(5x^2-2x+10\right)^2=\left(3x^2+10x-8\right)^2\)
a) 4 b) 0,6 hoặc 1,75 e) -3,5 hoặc -3
Giải PT sau:
1)\(\left(2x+7\right)^2=9\left(x+2\right)^2\)
2)\(\left(x^2-16\right)^2-\left(x-4\right)^2=0\)
3)\(\left(5x^2-2x+10\right)^2=\left(3x^2+10x-8\right)^2\)
Giải các phương trình sau:
\(a.\dfrac{5x-2}{3}=\dfrac{5-3x}{2}\)
\(b.\dfrac{10x+3}{12}=1+\dfrac{6+8x}{9}\)
\(c.2\left(x+\dfrac{3}{5}\right)=5-\left(\dfrac{13}{5}+x\right)\)
\(d.\dfrac{7}{8}x-5\left(x-9\right)=\dfrac{20x+1,5}{6}\)
\(e.\dfrac{7x-1}{6}+2x=\dfrac{16-x}{5}\)
\(f.\dfrac{x+4}{5}-x+4=\dfrac{x}{3}-\dfrac{x-2}{2}\)
a: =>10x-4=15-9x
=>19x=19
hay x=1
b: \(\Leftrightarrow3\left(10x+3\right)=36+4\left(8x+6\right)\)
=>30x+9=36+32x+24
=>30x-32x=60-9
=>-2x=51
hay x=-51/2
c: \(\Leftrightarrow2x+\dfrac{6}{5}=5-\dfrac{13}{5}-x\)
=>3x=6/5
hay x=2/5
d: \(\Leftrightarrow\dfrac{7x}{8}-\dfrac{5\left(x-9\right)}{1}=\dfrac{20x+1.5}{6}\)
\(\Leftrightarrow21x-120\left(x-9\right)=4\left(20x+1.5\right)\)
=>21x-120x+1080=80x+60
=>-179x=-1020
hay x=1020/179
e: \(\Leftrightarrow5\left(7x-1\right)+60x=6\left(16-x\right)\)
=>35x-5+60x=96-6x
=>95x+6x=96+5
=>x=1
f: \(\Leftrightarrow6\left(x+4\right)+30\left(-x+4\right)=10x-15\left(x-2\right)\)
=>6x+24-30x+120=10x-15x+30
=>-24x+96=-5x+30
=>-19x=-66
hay x=66/19
Giải phương trình sau
1. \(5x^2-16x+7+\left(x+1\right)\sqrt{x^2+3x-1}=0\)
2. \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\left(\frac{2x-1}{2-x}+2\sqrt{2-x}\right)^3=27\left(2x-1\right)\)
Giải phương trình nghiệm nguyên sau:
\(3x^3-13x^2+30x-4=\sqrt{\left(6x+2\right)\left(3x-4\right)^3}\)
[Lớp 8]
Bài 1. Giải phương trình sau đây:
a) \(7x+1=21;\)
b) \(\left(4x-10\right)\left(24+5x\right)=0;\)
c) \(\left|x-2\right|=2x-3;\)
d) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}.\)
Bài 2. Giải bất phương trình sau đây và biểu diễn tập nghiệm trên trục số:
\(\dfrac{x-1}{3}-\dfrac{3x+5}{2}\ge1-\dfrac{4x+5}{6}.\)
Bài 3. Tìm giá trị lớn nhất của \(A=-x^2+2x+9.\)
Bài 4. Giải bài toán bằng cách lập phương trình:
Một người đi xe máy dự định đi từ A đến B với vận tốc 36km/h. Nhưng khi thực hiện người đó giảm vận tốc 6km/h nên đã đến B chậm hơn dự định là 24 phút.
Tính quãng đường AB.
Bài 5. Cho tam giác ABC vuông tại A có AH là đường cao. Vẽ HD⊥ AB (D ∈ AB), HE ⊥ AC (E∈ AC). AB=12cm, AC=16cm.
a) Chứng minh: ΔHAC đồng dạng với ΔABC;
b) Chứng minh AH2=AD.AB;
c) Chứng minh AD.AB=AE.AC;
d) Tính \(\dfrac{S_{ADE}}{S_{ABC}}.\)
Bài 4 :
24 phút = \(\dfrac{24}{60} = \dfrac{2}{5}\) giờ
Gọi thời gian dự định đi từ A đến B là x(giờ) ; x > 0
Suy ra quãng đường AB là 36x(km)
Khi vận tốc sau khi giảm là 36 -6 = 30(km/h)
Vì giảm vận tốc nên thời gian đi hết AB là x + \(\dfrac{2}{5}\)(giờ)
Ta có phương trình:
\(36x = 30(x + \dfrac{2}{5})\\ \Leftrightarrow x = 2\)
Vậy quãng đường AB dài 36.2 = 72(km)
Bài 3 :
\(A = -x^2 + 2x + 9 = -(x^2 -2x - 9) \\= -(x^2 - 2x + 1 + 10) = -(x^2 -2x + 1)+ 10\\=-(x-1)^2 + 10\)
Vì : \((x-1)^2 \geq 0\) ∀x \(\Leftrightarrow -(x-1)^2 \)≤ 0 ∀x \(\Leftrightarrow -(x-1)^2 + 10\) ≤ 10
Dấu "=" xảy ra khi và chỉ khi x - 1 = 0 ⇔ x = 1
Vậy giá trị nhỏ nhất của A là 10 khi x = 1
Giải các phương trình sau bằng cách đặt ẩn phụ :
a) \(\left(4x-5\right)^2-6\left(4x-5\right)+8=0\)
b) \(\left(x^2+3x-1\right)^2+2\left(x^2+3x-1\right)-8=0\)
c) \(\left(2x^2+x-2\right)^2+10x^2+5x-16=0\)
d) \(\left(x^2-3x+4\right)\left(x^2-3x+2\right)=3\)
e) \(\dfrac{2x^2}{\left(x+1\right)^2}-\dfrac{5x}{x+1}+3=0\)
f) \(x-\sqrt{x-1}-3=0\)
Giải các phương trình sau :
\(a,6x^2-5x+3=2x-3x\left(3-2x\right)\)
\(b,\frac{2\left(x-4\right)}{4}-\frac{3+2x}{10}=x+\frac{1-x}{5}\)
\(c,\frac{2x}{3}+\frac{3x-5}{4}=\frac{3\left(2x-1\right)}{2}-\frac{7}{6}\)
\(d,\frac{6x+5}{2}-\frac{10x+3}{4}=2x+\frac{2x+1}{2}\)
\(e,\left(x-4\right)\left(x+4\right)-2\left(3x-2\right)=\left(x-4\right)^2\)
a) <=> \(6x^2-5x+3-2x+3x\left(3-2x\right)=0\)
<=> \(6x^2-5x+3-2x+9x-6x^2=0\)
<=> \(2x+3=0\)
<=> \(x=\frac{-3}{2}\)
b) <=> \(10\left(x-4\right)-2\left(3+2x\right)=20x+4\left(1-x\right)\)
<=> \(10x-40-6-4x=20x+4-4x\)
<=> \(6x-46-16x-4=0\)
<=> \(-10x-50=0\)
<=> \(-10\left(x+5\right)=0\)
<=> \(x+5=0\)
<=> \(x=-5\)
c) <=> \(8x+3\left(3x-5\right)=18\left(2x-1\right)-14\)
<=> \(8x+9x-15=36x-18-14\)
<=> \(8x+9x-36x=+15-18-14\)
<=> \(-19x=-14\)
<=> \(x=\frac{14}{19}\)
d) <=>\(2\left(6x+5\right)-10x-3=8x+2\left(2x+1\right)\)
<=> \(12x+10-10x-3=8x+4x+2\)
<=> \(2x-7=12x+2\)
<=> \(2x-12x=7+2\)
<=> \(-10x=9\)
<=> \(x=\frac{-9}{10}\)
e) <=> \(x^2-16-6x+4=\left(x-4\right)^2\)
<=> \(x^2-6x-12-\left(x-4^2\right)=0\)
<=> \(x^2-6x-12-\left(x^2-8x+16\right)=0\)
<=> \(x^2-6x-12-x^2+8x-16=0\)
<=> \(2x-28=0\)
<=> \(2\left(x-14\right)=0\)
<=> x-14=0
<=> x=14
Luffy , cậu sai câu c nhé , kia là -17 ạ => x=17/19