Phan tich da thuc thanh nhan tu
x^2 + y^2 + z^2 - 3xyz
phan tich da thuc thanh nhan tu
x^2+y^2+z^2+3xyz
phan tich da thuc thanh nhan tu
x^2+y^2+z^2+3xyz
phan tich da thuc thanh nhan tu x^3 +y^3-z^3+3xyz
\(x^3+y^3+z^3-3xyz\) \(=\left(x+y\right)^3-3x^2y-3xy^2+z^2-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
HỌC TỐT NHA!
ta có:
x³ + y³ + z³ - 3xyz
= (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz)
- Hình như đề của u sai hay sao á :)))
X^3+Y^3+Z^3-3xyz
phan tich da thuc thanh nhan tu
phan tich da thuc thanh nhan tu
x^3+y^3+z^3-3xyz
x3+y3+z3-3xyz
= (x+y)3-3xy(x+y)+z3-3xyz
= [(x+y)3+z3]-[3xy(x+y)+3xyz]
=(x+y+z)[(x+y)2-(x+y).z+z2]-3xy(x+y+z)
=(x+y+z)(x2+y2+z2+2xy-xz-yz) -3xy(x+y+z)
= (x+y+z)(x2+y2+z2-xy-xz-yz)
PHAN TICH DA THUC THANH NHAN TU
B= X^3+Y^3+Z^3-3XYZ
\(B=x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-yz-xz\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
phan tich da thuc thanh nhan tu
x(x-4)+5x-20
\(=x\left(x-4\right)+5\left(x-4\right)=\left(x+5\right)\left(x-4\right)\)
x^2 - 2xy + y^2 - z^2 phan tich da thuc thanh nhan tur
\(x^2-2xy+y^2-z^2\\=(x^2-2xy+y^2)-z^2\\=(x-y)^2-z^2\\=(x-y-z)(x-y+z)\)
phan tich da thuc thanh nhan tu
x^2-x-y^2-y
x^2-2xy+y^2-z^2
bai 32 va 33 sbt
lop 8 bai phan tich da thuc thanh nhan tu bang cach nhom hang tu
Ta có
a, x2-x-y2-y
=x2-y2-(x+y)
=(x-y)(x+y) - (x+y)
=(x+y)(x-y-1)
b, x2-2xy+y2-z2
=(x-y)2-z2
=(x-y-z)(x-y+z)
con bai 32, 33 neu ban tra loi duoc minh h them