Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thành Phát Nguyễn
Xem chi tiết
Rau
27 tháng 8 2017 lúc 14:23

Chép lại đề -_- Nghiệm nát như thế liên cái vào mắt =))

Thắng Nguyễn
27 tháng 8 2017 lúc 17:27

\(2\left(x-4\right)\sqrt{x-2}+\left(x-2\right)\sqrt{x+1}+2\left(x-3\right)=0\)

ĐK:\(x\ge2\)

\(\Leftrightarrow2\left(x-4\right)\left(\sqrt{x-2}-1\right)+\left(x-2\right)\left(\sqrt{x+1}-2\right)-2\left(x-3\right)=0\)

\(\Leftrightarrow2\left(x-4\right)\frac{x-2-1}{\sqrt{x-2}+1}+\left(x-2\right)\frac{x+1-4}{\sqrt{x+1}+2}-2\left(x-3\right)=0\)

\(\Leftrightarrow2\left(x-4\right)\frac{x-3}{\sqrt{x-2}+1}+\left(x-2\right)\frac{x-3}{\sqrt{x+1}+2}-2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{2\left(x-4\right)}{\sqrt{x-2}+1}+\frac{x-2}{\sqrt{x+1}+2}-2\right)=0\)

Suy ra x=3

Thảo Nguyên
Xem chi tiết
tấn phát
Xem chi tiết
Nguyễn Linh Chi
26 tháng 2 2020 lúc 10:35

1) ĐK: \(x\ge-1\)

\(\sqrt{9x^2+9x+4}>9x+3-\sqrt{x+1}\)

<=> \(\sqrt{9x^2+9x+4}+\sqrt{x+1}>9x+3\)(1)

TH1: 9x + 3 \(\le\)0 <=> x\(\le-\frac{1}{3}\)

(1) luôn đúng 

Th2: x\(>-\frac{1}{3}\)

<=> \(\left(\frac{1}{2}x+1-\sqrt{x+1}\right)+\left(\frac{17}{2}x+2-\sqrt{9x^2+9x+4}\right)< 0\)

<=> \(\frac{\frac{1}{4}x^2}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{\frac{253}{4}x^2}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}< 0\)

<=> \(\frac{x^2}{4}\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)< 0\)vô nghiệm 

 Vì với x \(>-\frac{1}{3}\)

ta có: \(\frac{1}{2}x+1+\sqrt{x+1}>0\)

\(\frac{17}{2}x+2+\sqrt{9x^2+9x+4}=\frac{17}{2}x+2+\sqrt{3\left(x+\frac{1}{2}\right)^2+\frac{7}{4}}>\frac{17}{2}x+2+1>0\)

=> \(\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)>0\)với x \(>-\frac{1}{3}\) và \(x^2\ge0\)với mọi x

=> \(\frac{x^2}{4}\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)\ge0\)với x\(>-\frac{1}{3}\)

Vậy \(x< -\frac{1}{3}\)

Khách vãng lai đã xóa
Nguyễn Linh Chi
26 tháng 2 2020 lúc 11:14

Xin lỗi bạn kết luận bài 1 là:

\(-1\le x\le-\frac{1}{3}\)

Bài 2)  \(2+\sqrt{x+2}-x\sqrt{x+2}=x\left(\sqrt{x+2}-x\right)\)(2)

ĐK: \(x\ge-2\)

(2) <=> \(2+\sqrt{x+2}+x^2-2x\sqrt{x+2}=0\)

<=> \(8+4\sqrt{x+2}+4x^2-8x\sqrt{x+2}=0\)

<=> \(\left(2x-1\right)^2-4\left(2x-1\right)\sqrt{x+2}+4\left(x+2\right)-1=0\)

<=> \(\left(2x-1-2\sqrt{x+2}\right)^2-1=0\)

<=> \(\left(x-1-\sqrt{x+2}\right)\left(x-\sqrt{x+2}\right)=0\)

<=> \(\orbr{\begin{cases}x-1=\sqrt{x+2}\left(3\right)\\x=\sqrt{x+2}\left(4\right)\end{cases}}\)

(3) <=> \(\hept{\begin{cases}x\ge1\\x^2-3x-1=0\end{cases}}\Leftrightarrow x=\frac{3+\sqrt{13}}{2}\left(tm\right)\)

(4) <=> \(\hept{\begin{cases}x\ge0\\x^2-x-2=0\end{cases}\Leftrightarrow}x=2\left(tm\right)\)

Kết luận:...

Khách vãng lai đã xóa
Thu Phương Nguyễn
Xem chi tiết
Người Vô Danh
Xem chi tiết
Không Tên
Xem chi tiết
Incursion_03
13 tháng 11 2018 lúc 23:18

Nghĩ đc bài nào làm bài đấy ^^

\(\text{1)}\sqrt{x^2+x-3}=x+m\)\(\text{(ĐKXĐ: }x^2+x-3\ge0\)\(\text{)}\)

\(\Leftrightarrow x^2+x-3=x^2+2mx+m^2\)

\(\Leftrightarrow x-2mx=m^2+3\)

\(\Leftrightarrow x\left(1-2m\right)=m^2+3\)(1)

*Nếu 1 - 2m = 0 thì \(m=\frac{1}{2}\)

Khi đó pt (1) \(\Leftrightarrow0x=\frac{1}{4}+3\)

Pt vô nghiệm

*Nếu 1 - 2m \(\ne\)0 thì \(m\ne\frac{1}{2}\)

Khi đó pt (1) có nghiệm duy nhất \(x=\frac{m^2+3}{1-2m}\)

Kết hợp ĐKXĐ \(x^2+x-3\ge0\)

                    \(\Leftrightarrow\frac{\left(m^2+3\right)^2}{\left(1-2m\right)^2}+\frac{m^2+3}{1-2m}-3\ge0\)

Đến đây quy đồng lên được điều kiện của m và kết hợp m khác 1/2

=> KL

Incursion_03
13 tháng 11 2018 lúc 23:47

2) ĐKXĐ : -1 < x < 8

 Đặt \(\sqrt{1+x}+\sqrt{8-x}=a\ge0\)

\(\Rightarrow a^2=9+2\sqrt{\left(1+x\right)\left(8-x\right)}\)

\(\Rightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\frac{a^2-9}{2}\)

Khi đó \(a+\frac{a^2-9}{2}=m\)

 \(\Leftrightarrow2a+a^2-9=2m\)

\(\Leftrightarrow a^2+2a-9-2m=0\)(1)

Xét \(\Delta'=1-\left(-9-2m\right)=10+2m\)

Pt có nghiệm \(\Leftrightarrow\Delta'\ge0\Leftrightarrow m\ge-5\)

Từ (1) \(\Rightarrow a^2+2a-9=2m\ge2\left(-5\right)=-10\)

           \(\Leftrightarrow a^2+2a-9\ge-10\)

            \(\Leftrightarrow a^2+2a+1\ge0\)

            \(\Leftrightarrow\left(a+1\right)^2\ge0\)(Luôn đúng)

Vậy *với m> -5 thì pt có vô số nghiệm nằm trong khoảng -1 8

       * với m < -5 thì pt vô nghiệm

P/S: chả bt cách này đúng ko nx =.='    

Hoàng Lê Minh
Xem chi tiết
tth_new
12 tháng 7 2019 lúc 18:34

Em thử nha,sai thì thôi ạ.

2/ ĐK: \(-2\le x\le2\)

PT \(\Leftrightarrow\sqrt{2x+4}-\sqrt{8-4x}=\frac{6x-4}{\sqrt{x^2+4}}\)

Nhân liên hợp zô: với chú ý rằng \(\sqrt{2x+4}+\sqrt{8-4x}>0\) với mọi x thỏa mãn đk

PT \(\Leftrightarrow\frac{6x-4}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{6x-4}{\sqrt{x^2+4}}=0\)

\(\Leftrightarrow\left(6x-4\right)\left(\frac{1}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{1}{\sqrt{x^2+4}}\right)=0\)

Tới đây thì em chịu chỗ xử lí cái ngoặc to rồi..

Trần Phúc Khang
13 tháng 7 2019 lúc 12:07

1.\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)

ĐK \(x\ge-1\)

Nhân liên hợp ta có

\(\left(x+3-x-1\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)

<=>\(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}=x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)

<=> \(\left(x^2-x\sqrt{x+3}\right)+\left(\sqrt{\left(x+1\right)\left(x+3\right)}-x\sqrt{x+1}\right)=0\)

<=> \(\left(x-\sqrt{x+3}\right)\left(x-\sqrt{x+1}\right)=0\)

<=> \(\orbr{\begin{cases}x=\sqrt{x+3}\\x=\sqrt{x+1}\end{cases}}\)

=> \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)

Vậy \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)

Trần Phúc Khang
13 tháng 7 2019 lúc 12:25

2. Tiếp đoạn của tth

\(\sqrt{x^2+4}=\sqrt{2x+4}+\sqrt{8-4x}\)

<=> \(x^2+4=2x+4+8-4x+2\sqrt{8\left(x+2\right)\left(x-2\right)}\)

<=> \(x^2+2x-8=4\sqrt{2\left(x+2\right)\left(2-x\right)}\)

<=>\(\left(x-2\right)\left(x+4\right)=4\sqrt{2\left(x+2\right)\left(2-x\right)}\)

<=> \(\orbr{\begin{cases}x=2\\\left(x+4\right)\sqrt{2-x}=-4\sqrt{2\left(x+2\right)}\left(2\right)\end{cases}}\)

Pt (2) vô nghiệm do \(x+4>0\)với \(x\ge-2\)

=> \(x=2\)

Vậy x=2

Lê Hoàng Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2023 lúc 9:02

\(\Leftrightarrow\left(x+3\right)\sqrt{2x^2+1}-\left(x+3\right)=x^2\)

=>\(\left(x+3\right)\cdot\left(\sqrt{2x^2+1}-1\right)=x^2\)

=>\(\left(x+3\right)\cdot\dfrac{2x^2+1-1}{\sqrt{2x^2+1}+1}-x^2=0\)

=>\(x^2\left(\dfrac{2\left(x+3\right)}{\sqrt{2x^2+1}+1}-1\right)=0\)

=>x^2=0 hoặc \(\dfrac{2\left(x+3\right)}{\sqrt{2x^2+1}+1}=1\)

=>\(\left[{}\begin{matrix}x=0\\\sqrt{2x^2+1}+1=2x+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2x^2+1=\left(2x+5\right)^2;x>=-\dfrac{5}{2}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=0\\4x^2+20x+25-2x^2-1=0;x>=-\dfrac{5}{2}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=0\\\left\{{}\begin{matrix}2x^2+20x+24=0\\x>=-\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5+\sqrt{13}\end{matrix}\right.\)

=>Phương trình này có 2 nghiệm

Thiên Thương Lãnh Chu
Xem chi tiết
Đặng Khánh
30 tháng 5 2021 lúc 7:39

1 số gợi ý

hpt \(\Leftrightarrow\left\{{}\begin{matrix}2x\left(2x-2y-1\right)=6\left(y+2\right)\\6y+12\sqrt{2x-1}=2y^2-2x+46\end{matrix}\right.\)(1)

Đặt \(\sqrt{2x-1}=t\left(t\ge0\right)\)

(1)\(\Leftrightarrow\left\{{}\begin{matrix}\left(t^2+1\right)\left(t^2-2y\right)=6\left(y+2\right)\left(2\right)\\6y+12t=2y^2-t^2+45\end{matrix}\right.\)

(2)\(\Leftrightarrow\left(t^2+4\right)\left(t^2-2y-3\right)=0\)

\(\Leftrightarrow t^2-2y-3=0\)

ta có hpt mới sau : \(\left\{{}\begin{matrix}t^2-2y-3=0\\2y^2-t^2+45=6y+12t\end{matrix}\right.\)

một cách trâu bò nhưng hiệu quả là

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{t^2-3}{2}\\2y^2-t^2-6y-12t+45=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{t^2-3}{2}\\2\left(\dfrac{t^2-3}{2}\right)^2-t^2-6\left(\dfrac{t^2-3}{2}\right)-12t+45=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{t^2-3}{2}\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=3\\t=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=5\end{matrix}\right.\)

Đặng Khánh
30 tháng 5 2021 lúc 15:15

\(\left(a,b,n\in N\right)\left\{{}\begin{matrix}n^2=a+b\\n^3+2=a^2+b^2\end{matrix}\right.\)

Áp dụng BĐT cơ bản : \(x^2+y^2\ge\dfrac{1}{2}\left(x+y\right)^2\)

\(\rightarrow n^3+2=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2=\dfrac{1}{2}\left(n^2\right)^2=\dfrac{1}{2}n^4\)

\(\Rightarrow n^3+2-\dfrac{n^4}{2}\ge0\)\(\Rightarrow0\le n\le2\)

Xét từng TH của n và kết quả nhận được là \(n=2\); (a,b) là hoán vị của (1,3)

 

Đặng Khánh
1 tháng 6 2021 lúc 9:39

tớ mượn test cái nha

Áp dụng định lí viet ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-3\left(1\right)\\x_1x_2=m-1\left(2\right)\end{matrix}\right.\)

\(x_1\left(x_1^4-1\right)+x_2\left(32x_2^4-1\right)=3\)

\(\leftrightarrow\left(x_1\right)^5+\left(2x_2\right)^5-\left(x_1+x_2\right)=3\)

\(\leftrightarrow x_1^5+\left(2x_2\right)^5-\left(-3\right)=3\)

\(x_1^5+\left(2x_2\right)^5=0\leftrightarrow x_1=-2x_2\)

Thay vào (1)\(\rightarrow x_1=-6;x_2=3\)

Thay vào (2)\(\rightarrow m-1=\left(-6\right).3=-18\rightarrow m=-17\)