CMR x^2002 + x^2000 +1 chia hết cho x^2 +x + 1
CMR f(x) chia hết cho g(x):
a) \(f\left(x\right)=x^{2002}+x^{2000}+1;g\left(x\right)=x^2+x+1\)
chứng minh rằng x^2002 +x^2000 + 1 chia hết cho x^2 +x +1
Chứng minh x2002+x2000+1 chia hết cho x2+x+1
Lời giải:
$x^{2002}+x^{2000}+1=(x^{2002}-x)+(x^{2000}-x^2)+(x^2+x+1)$
$=x(x^{2001}-1)+x^2(x^{1998}-1)+(x^2+x+1)$
$=x[(x^3)^{667}-1]+x^2[(x^3)^{666}-1]+(x^2+x+1)$
$=x(x^3-1)[(x^3)^{666}+...+x^3+1]+x^2(x^3-1)[(x^3)^{665}+...+x^3+1]+(x^2+x+1)$
$=x(x-1)(x^2+x+1)[(x^3)^{666}+...+x^3+1]+x^2(x-1)(x^2+x+1)[(x^3)^{665}+...+x^3+1]+(x^2+x+1)$
$=(x^2+x+1)[x(x-1)[(x^3)^{666}+...+x^3+1]+x^2(x-1)[(x^3)^{665}+...+x^3+1]+1]\vdots x^2+x+1$
chứng minh x^2002+x^2000+1 chia hết x^2+x+1
áp dụng : x3m+2+x3n+1+1 luon chia hết cho (x2+x+1) voi71 m,n E N
\(x^{2000}\left(x^2+x+1\right)-\left(x^{2001}-1\right)\)số hạng thứ nhất hiển nhiên chia hết cho A=x^2+x+1 khác 0 với mọi x
xét: \(C=x^{2001}-1\)
Nếu x=1 => C=0 hiển nhiên C chia hết cho A
nếu x khác 1
\(B=\left(1+x+x^2+...+x^{2000}\right)=\frac{\left(x^{2001}-1\right)}{\left(x-1\right)}=\frac{C}{x-1}\)
B có 2001 số hạng chia hết cho 3 => ghép 3 số hạng liên tiếp có
\(B=\left(1+x+x^2\right)+x^3\left(1+x+x^2\right)+x^6\left(1+x+x^2\right)+..+x^{1998}\left(1+x+x^2\right)\)
Hiển nhiên B chia hết cho A
C=B(x-1) chia hết cho A do B chia hết cho A
=> DPCM
chứng minh rằng
(x2002+x2000+1)chia hết cho(x2+x+1)
Chứng minh rằng x^2002 +x^2000+1 chia hết cho x^2+x+1
Ta thấy \(x^{2002}+x^{2000}+1\) có dạng \(x^{3m+1}+x^{3n+1}+1\)
Ta sẽ đi chứng minh \(x^{3m+1}+x^{3n+1}+1⋮x^2+x+1\)
Thật vậy,ta có:
\(x^{3m+1}+x^{3n+2}+1\)
\(=x^{3m+1}-x+x^{3n+2}-x^2+x^2+x+1\)
\(=x\left(x^{3m}-1\right)-x^2\left(x^{3n}-1\right)+\left(x^2+x+1\right)\)
Mà \(x^{3m}-1⋮x^2+x+1;x^{3n}-1⋮x^2+x+1\) nên \(x^{3m+1}+x^{3n+2}+1⋮x^2+x+1\)
Bài 1 : Tìm x :
1) 36^2-49=0
2) x^3-16x=0
3) (x-1)*(x+2)-x-2=0
4) 3x^3-27x=0
5) x^2*(x+1)+2x*(x+1)=0
6) x*(2x-3)-2*(3-2x)=0
Bài 2 : Toán chia hết :
a) CMR 8^5+2^11chia hết cho 17
b) CMR 69^2-69.5chia hết cho 32
c) CMR 328^3+172^3 chia hết cho 2000
d) CMR 19^19+69^19 chia hết cho 44
e) CMR hiệu các bình phương của hai số lẻ liên tiếp chia hết cho 8
Bài 1: CMR:
a, A=1/2+1/3^2+1/3^3+...+1/3^99<1/2
b, B=1/2+(1/2)^2+(1/2)^4+...+(1/2)^98+(1/2)^99<1
Bài 2 CMR:
a, 7^6+7^5-7^4 chia hết cho 55
b,3^n+2-2^n+2+3^n-2^n chi hết cho 10 ( với mọi số nguyên dương a)
c,43^43-17^17 chia hết cho 10
d, 23^401+38^201-2^433 chia hết cho 5
Bài 3 Tìm x, biết: / / là dấu GTTĐ
a, /x-5/=x+3
b, /x-5/=/x+3/
c, /x-1/+/x-3/=2x
d, (2x-3)^2=4/9
e, (2x-1)^3=-8
f, 35-x/x+14=3/5
g, 0,4:x=x:0,9
h, x+4/2000+x=3/2001=x-3/2000+x-4/1999
i, x-1/2002+x-2/2001=x-3/2000+x-4/1999
k, (2x+1/3)(3x-1/4)(4x+1/5)
n, 5^x+5^(x+2)= 650
m, 3^(x-1) +5.3^(x-1)=162
a) Cho đẳng thức : x(x+1)(x+2)(x+3)...(x+2002) = 2002 ( với x>0)
Chứng minh rằng : x< 1 / 2001!
b) Cho 10m -1 chia hết cho 19. Chứng minh rằng 102m +18 chia hết cho 19.