Cho \(\Delta ABC\)đều. M là 1 điểm bất kì trên cạnh BC. Lấy N đối xứng với M qua AB ; Q đối xứng với M qua AC. Đường thẳng song song với MQ qua N và đường thẳng song song với MN qua Q cắt nhau tại P. Chứng minh AP // BC
Cho tam giác ABC đều có đường cao AH. Trên cạnh BC lấy điểm D bất kì. Gọi E là điểm đối xứng D qua AB, F là điểm đối xứng của D qua AC. Kẻ EM vuông góc với BC, FN vuông góc với BC. Cm EM+FN=AH
Bài 1.Cho tam giác ABC vuông ở A , lấy D là điểm bất kì thuộc cạnh BC . Gọi E là điểm đối xứng với D qua AB , F là điểm đối xứng với D qua AC .Điểm D ở vị trí nào trên cạnh BC thì EF có độ dài ngắn nhất?
Cho tam giác ABC vuông tại A , M là điểm bất kì trên cạnh BC . Gọi N là điểm đối xứng với M qua AB , K là điểm đối xứng với M qua AC . MN cắt AB tại I , MK cắt AC tại H
a ) Tính diện tích tứ giác ANBM biết AB = 8cm , MN = 3cm
b ) Chứng minh tứ giác AIMH lá hình chữ nhật
c ) Chứng minh tứ giác ANIH là hình bình hành
d ) Chứng minh N đối xứng với K qua A
cho tam giác vuông abc (góc a= 90 độ ) lấy m bất kì trên cạnh bc gọi e,f làn lượt là các điểm đối xứng với m qua ab và ac chứng minh a là trung điểm của ef
Cho \(\Delta ABC\) cân tại A, M là điểm bất kì trên BC. Qua M kẻ các đường thẳng song với AB, AC lần lượt cắt AC, AB ở D và E. Gọi N là điểm đối xứng với M qua E. C/minh: Tứ giác ANED là hình bình hành.
Cho tam giác ABC vuông tại A. Lấy điểm D bất kì thuộc cạnh BC. Gọi E là điểm đối xứng với D qua AB; F là điểm đối xứng với D qua AC.
a) Gọi M và N lần lượt là giao điểm của DE với AB và DF với AC. Tứ giác AMDN là hình gì? Vì sao?
b) Tính diện tích tam giác ABC, biết AB = 6cm và BC = 10cm.
c) Chứng minh ba điểm E, A, F thẳng hàng .
a: Xét tứ giác AMDN có
\(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)
Do đó: AMDN là hình chữ nhật
b: AC=8cm
\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)
c: Ta có: D và E đối xứng nhau qua AB
nên AD=AE
=>ΔADE cân tại A
mà AB là đường trung trực
nên AB là tia phân giác của góc DAE(1)
Ta có: D và F đối xứng nhau qua AC
nên AC là đường trung trực của DF
=>AD=AF
=>ΔADF cân tại A
mà AC là đường trung trực của DF
nên AC là tia phân giác của góc DAF(2)
Từ (1) và (2) suy ra \(\widehat{FAE}=2\cdot\left(\widehat{BAD}+\widehat{CAD}\right)=2\cdot90^0=180^0\)
Do đó: F,A,E thẳng hàng
Cho tam giác ABC, trên BC lấy M bất kì. Qua M kẻ ME//AC CE thuộc AB ; MF//AB (F thuộc AC). Gọi I là trung điểm AM.
Chứng Minh: E đối xứng với F qua I.
Vì ME//AC và MF//AB nên AEMF là hbh
Mà I là trung điểm AM nên I là trung điểm EF
Do đó E đx F qua I
Cho tam giác vuông ABC (A = 90°). Lấy M bất kì trên cạnh BC. Gọi E, F lần lượt là các điểm đối xứng với M qua AB và AC. Gọi I, K lần lượt là giao điểm của MẸ với AB và MF với AC. Chứng minh:
a) MIAK là hình chữ nhật.
b) A là trung điểm của EF.
a: M đối xứng E qua AB
=>AB là đường trung trực của ME
=>AB\(\perp\)ME tại I và I là trung điểm của ME
Ta có: M đối xứng F qua AC
=>AC là đường trung trực của MF
=>AC\(\perp\)MF tại K và K là trung điểm của MF
Xét tứ giác AIMK có
\(\widehat{AIM}=\widehat{AKM}=\widehat{KAI}=90^0\)
=>AIMK là hình chữ nhật
b: Ta có: AKMI là hình chữ nhật
=>AK//MI và AK=MI; KM//AI và KM=AI
Ta có: MI//AK
I\(\in\)ME
Do đó: IE//AK
Ta có: AK=IM
IM=IE
Do đó: AK=IE
Ta có: AI=MK
MK=KF
Do đó: AI=KF
Ta có: AI//MK
K\(\in\)MF
Do đó: AI//KF
Xét tứ giác AKIE có
AK//IE
AK=IE
Do đó: AKIE là hình bình hành
=>KI//AE và KI=AE
Xét tứ giác AIKF có
AI//KF
AI=KF
Do đó: AIKF là hình bình hành
=>KI//AF và KI=AF
Ta có: KI//AF
KI//AE
AE,AF có điểm chung là A
Do đó: E,A,F thẳng hàng
Ta có: KI=AE
KI=AF
Do đó: AE=AF
mà E,A,F thẳng hàng
nên A là trung điểm của EF