Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phan Thanh Tịnh

Cho \(\Delta ABC\)đều. M là 1 điểm bất kì trên cạnh BC. Lấy N đối xứng với M qua AB ; Q đối xứng với M qua AC. Đường thẳng song song với MQ qua N và đường thẳng song song với MN qua Q cắt nhau tại P. Chứng minh AP // BC

Cô Hoàng Huyền
11 tháng 10 2017 lúc 14:09

Hình đa giác TenDaGiac1: DaGiac(B, C, 3) Hình đa giác TenDaGiac1: DaGiac(B, C, 3) Đoạn thẳng f: Đoạn thẳng [B, C] Đoạn thẳng J_1: Đoạn thẳng [C, A] Đoạn thẳng h: Đoạn thẳng [A, B] Đoạn thẳng i: Đoạn thẳng [N, M] Đoạn thẳng j: Đoạn thẳng [Q, M] Đoạn thẳng m: Đoạn thẳng [N, P] Đoạn thẳng n: Đoạn thẳng [Q, P] Đoạn thẳng p: Đoạn thẳng [A, P] Đoạn thẳng q: Đoạn thẳng [M, I] B = (0.52, -5.67) B = (0.52, -5.67) B = (0.52, -5.67) C = (19.2, -5.49) C = (19.2, -5.49) C = (19.2, -5.49) Điểm A: DaGiac(B, C, 3) Điểm A: DaGiac(B, C, 3) Điểm A: DaGiac(B, C, 3) Điểm M: Điểm trên f Điểm M: Điểm trên f Điểm M: Điểm trên f Điểm N: M đối xứng qua h Điểm N: M đối xứng qua h Điểm N: M đối xứng qua h Điểm Q: M đối xứng qua J_1 Điểm Q: M đối xứng qua J_1 Điểm Q: M đối xứng qua J_1 Điểm P: Giao điểm đường của k, l Điểm P: Giao điểm đường của k, l Điểm P: Giao điểm đường của k, l Điểm I: Giao điểm đường của h, m Điểm I: Giao điểm đường của h, m Điểm I: Giao điểm đường của h, m Điểm K: Giao điểm đường của h, i Điểm K: Giao điểm đường của h, i Điểm K: Giao điểm đường của h, i Điểm J: Giao điểm đường của J_1, m Điểm J: Giao điểm đường của J_1, m Điểm J: Giao điểm đường của J_1, m Điểm H: Giao điểm đường của J_1, j Điểm H: Giao điểm đường của J_1, j Điểm H: Giao điểm đường của J_1, j

Gọi giao điểm của NP với AB và AC lần lượt là I và J.

Gọi giao điểm của NM với BI là K; của MQ với JC là H.

Theo giả thiết ta suy ra K, H lần lượt là trung điểm của NM và MQ. Hơn nữa ta cũng có  \(NM\perp BI;MQ\perp JC\)

Do NP // MQ mà \(MQ\perp JH\) nên \(NP\perp JH\)

\(\Rightarrow\widehat{AIJ}=90^o-\widehat{BAC}=30^o\)

Vậy nên \(\widehat{NIB}=\widehat{AIJ}=30^o\) (Hai góc đối đỉnh)

\(\Rightarrow\widehat{NIK}=90^o-\widehat{NIB}=60^o\)

Xét tứ giác NPQM có NP // MQ; NM // PQ nên NPQM  là hình bình hành. 

Vậy \(\widehat{PQM}=\widehat{INM}=60^o\)

Ta có \(\widehat{BMK}=90^o-\widehat{ABC}=30^o;\widehat{NMI}=\widehat{INM}=60^o;\widehat{CMH}=90^o-\widehat{ACB}=30^o\)

nên \(\widehat{IMH}=180^o-30^o-60^o-30^o=60^o\)

Suy ra \(\widehat{IMH}=\widehat{PQH}\left(=60^o\right)\)

Xét hình thang IPQM có \(\widehat{IMH}=\widehat{PQH}\) nên nó là hình thang cân.

Ta có H là trung điểm MQ, \(JH\perp MQ;JH\perp IP\) nên I là trung điểm IP.

Xét tam giác AIP có AJ là đường cao đồng thời trung tuyến nên AIP là tam giác cân tại A.

Vậy AJ cũng là phân giác hay \(\widehat{JAP}=\widehat{JAI}=60^o\)

Suy ra \(\widehat{JAP}=\widehat{ACB}\left(=60^o\right)\)

Mà chúng lại ở vị trí so le trong nên AP // BC.


Các câu hỏi tương tự
Uzumaki Naruto
Xem chi tiết
Ninh Thanh Tú Anh
Xem chi tiết
Nguyễn Hồ Kim Ngân
Xem chi tiết
Nữ hoàng sến súa là ta
Xem chi tiết
Tkiet
Xem chi tiết
Dương Thúy Hiền
Xem chi tiết
Boruto MB
Xem chi tiết
Diệp Ngọc
Xem chi tiết
09 - 8A6 - Ngô Gia Hân
Xem chi tiết