Cho tam giác ABC vuông tại A. Lấy điểm D bất kì thuộc cạnh BC. Gọi E là điểm đối xứng với D qua AB; F là điểm đối xứng với D qua AC.
a) Gọi M và N lần lượt là giao điểm của DE với AB và DF với AC. Tứ giác AMDN là hình gì? Vì sao?
b) Tính diện tích tam giác ABC, biết AB = 6cm và BC = 10cm.
c) Chứng minh ba điểm E, A, F thẳng hàng .
a: Xét tứ giác AMDN có
\(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)
Do đó: AMDN là hình chữ nhật
b: AC=8cm
\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)
c: Ta có: D và E đối xứng nhau qua AB
nên AD=AE
=>ΔADE cân tại A
mà AB là đường trung trực
nên AB là tia phân giác của góc DAE(1)
Ta có: D và F đối xứng nhau qua AC
nên AC là đường trung trực của DF
=>AD=AF
=>ΔADF cân tại A
mà AC là đường trung trực của DF
nên AC là tia phân giác của góc DAF(2)
Từ (1) và (2) suy ra \(\widehat{FAE}=2\cdot\left(\widehat{BAD}+\widehat{CAD}\right)=2\cdot90^0=180^0\)
Do đó: F,A,E thẳng hàng