Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
lê hoàng quân

Cho tam giác ABC vuông tại A. Lấy điểm D bất kì thuộc cạnh BC. Gọi E là điểm đối xứng với D qua AB; F là điểm đối xứng với D qua AC. 
a) Gọi M và N lần lượt là giao điểm của DE với AB và DF với AC. Tứ giác AMDN là hình gì? Vì sao?
b) Tính diện tích tam giác ABC, biết AB = 6cm và BC = 10cm.
c) Chứng minh ba điểm E, A, F thẳng hàng .

Nguyễn Lê Phước Thịnh
13 tháng 1 2022 lúc 22:43

a: Xét tứ giác AMDN có

\(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)

Do đó: AMDN là hình chữ nhật

b: AC=8cm

\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)

c: Ta có: D và E đối xứng nhau qua AB

nên AD=AE

=>ΔADE cân tại A

mà AB là đường trung trực

nên AB là tia phân giác của góc DAE(1)

Ta có: D và F đối xứng nhau qua AC

nên AC là đường trung trực của DF

=>AD=AF

=>ΔADF cân tại A

mà AC là đường trung trực của DF

nên AC là tia phân giác của góc DAF(2)

Từ (1) và (2) suy ra \(\widehat{FAE}=2\cdot\left(\widehat{BAD}+\widehat{CAD}\right)=2\cdot90^0=180^0\)

Do đó: F,A,E thẳng hàng


Các câu hỏi tương tự
Thiên Tâm
Xem chi tiết
Reona Yên
Xem chi tiết
ßσss™|๖ۣۜHắc-chan|
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Trần Khánh Hưng
Xem chi tiết
Nhi Triệu
Xem chi tiết
Thư Nguyễn
Xem chi tiết
Giang Nguyễn nam
Xem chi tiết
Pham Trong Bach
Xem chi tiết