Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Bảo Ngọc
Xem chi tiết
Thien Tu Borum
10 tháng 10 2017 lúc 17:14

\(bài1\)

Cho a/b = c/d,Chứng minh a/(3a + b) = c/(3c + d),Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

Trịnh Văn Đại
10 tháng 10 2017 lúc 17:32

Bài 1:

Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta được:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}=\dfrac{3a+b}{3c+d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{3a+b}{3c+d}\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)

Vậy từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\left(\text{Đ}PCM\right)\)

Bài 2:

Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)

Xét \(k^2=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\)

Vậy từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\left(\text{đ}pcm\right)\)

Bài 3:

Ta có:\(\dfrac{2}{x}=\dfrac{3}{y}\Rightarrow\dfrac{y}{3}=\dfrac{x}{2}\)

Đặt \(\dfrac{y}{3}=\dfrac{x}{2}=k\)\(\Rightarrow\)y=3k

x=2k

Lại có xy=96

\(\Rightarrow2k3k=96\)

\(\Rightarrow6k^2=96\)

\(\Rightarrow k=\pm4\)

Với \(k=4\Rightarrow\left(x;y\right)=\left(8;12\right)\)

\(k=-4\Rightarrow\left(x;y\right)=\left(-8;-12\right)\)

Vậy ta tìm được 2 cặp x;y thỏa mãn yêu cầu đề bài là:

(x;y)=(8;12)

(x;y)=(-8;-12)

Blaze
Xem chi tiết

a, Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}\)

Áp dụng tính chất của day tỉ số bằng nhau ta được:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}=\dfrac{3a+b}{3c+d}\)

\(=>\dfrac{a}{c}=\dfrac{3a+b}{3c+d}=>\dfrac{a}{3a+b}=\dfrac{c}{3c+d}=>\left(đpcm\right)\)

 

Shuu
19 tháng 8 2021 lúc 7:33

Bài 1:

Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta được:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}=\dfrac{3a+b}{3c+d}\)

(ĐPCM)

b, Ta có \(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}\)

Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=x\)

Xét \(x^2=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\)

=>(đpcm)

Nguyễn Thị Mỹ Duyên
Xem chi tiết
2K9-(✎﹏ ΔΠGΣLS ΩҒ DΣΔTH...
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 12 2022 lúc 19:48

1.

Áp dụng BĐT Cauchy-Schwarz:

\(\dfrac{a}{2a+a+b+c}=\dfrac{a}{25}.\dfrac{\left(2+3\right)^2}{2a+a+b+c}\le\dfrac{a}{25}\left(\dfrac{2^2}{2a}+\dfrac{3^2}{a+b+c}\right)=\dfrac{2}{25}+\dfrac{9}{25}.\dfrac{a}{a+b+c}\)

Tương tự:

\(\dfrac{b}{3b+a+c}\le\dfrac{2}{25}+\dfrac{9}{25}.\dfrac{b}{a+b+c}\)

\(\dfrac{c}{a+b+3c}\le\dfrac{2}{25}+\dfrac{9}{25}.\dfrac{c}{a+b+c}\)

Cộng vế:

\(VT\le\dfrac{6}{25}+\dfrac{9}{25}.\dfrac{a+b+c}{a+b+c}=\dfrac{3}{5}\)

Dấu "=" xảy ra khi \(a=b=c\)

Nguyễn Việt Lâm
27 tháng 12 2022 lúc 19:52

2.

Đặt \(\dfrac{x}{x-1}=a;\dfrac{y}{y-1}=b;\dfrac{z}{z-1}=c\)

Ta có: \(\dfrac{x}{x-1}=a\Rightarrow x=ax-a\Rightarrow a=x\left(a-1\right)\Rightarrow x=\dfrac{a}{a-1}\)

Tương tự ta có: \(y=\dfrac{b}{b-1}\) ; \(z=\dfrac{c}{c-1}\)

Biến đổi giả thiết:

\(xyz=1\Rightarrow\dfrac{abc}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}=1\)

\(\Rightarrow abc=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)

\(\Rightarrow ab+bc+ca=a+b+c-1\)

BĐT cần chứng minh trở thành:

\(a^2+b^2+c^2\ge1\)

\(\Leftrightarrow\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\ge1\)

\(\Leftrightarrow\left(a+b+c\right)^2-2\left(a+b+c-1\right)\ge1\)

\(\Leftrightarrow\left(a+b+c-1\right)^2\ge0\) (luôn đúng)

TXT Channel Funfun
Xem chi tiết
Nguyễn Tấn Tài
18 tháng 7 2018 lúc 21:02

1. Đặt \(\frac{a}{b}=\frac{c}{d}=k=>a=bk,c=dk\)

Thay vào 2 vế là sẽ CM được

ʚTrần Hòa Bìnhɞ
18 tháng 7 2018 lúc 21:07

1. Đặt \(\frac{a}{b}=\frac{c}{d}=k>a=bk.c=dk\)

Thay vào 2 vế để chứng minh

Arima Kousei
18 tháng 7 2018 lúc 21:15

1 ) 

Ta có : 

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)(  Áp dụng t/c DTSBN ) 

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\left(1\right)\)

Lại có : \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{3a^2}{3c^2}=\frac{2b^2}{2d^2}=\frac{3a^2+2b^2}{3c^2+2d^2}\) (  Áp dụng t/c DTSBN )  \(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)

\(\Rightarrow\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{3a^2+2b^2}{3c^2+2d^2}\left(đpcm\right)\)

2 ) 

Ta có : 

\(x+y+2xy=83\)

\(\Rightarrow2\left(x+y+2xy\right)=166\)
\(\Rightarrow2x+2y+4xy+1=167\)

\(\Rightarrow2x\left(2y+1\right)+\left(2y+1\right)=167\)

\(\Rightarrow\left(2x+1\right)\left(2y+1\right)=167\)

Do \(x;y\in Z\)
\(\Leftrightarrow2x+1;2y+1\in Z\)
\(\Leftrightarrow2x+1;2y+1\in\left\{\pm1;\pm167\right\}\)

Ta có bảng sau : 

\(2x+1\)\(1\)\(167\)\(-1\)\(-167\)
\(2y+1\)\(167\)\(1\)\(-167\)\(-1\)
\(x\)\(0\)\(83\)\(-1\)\(-84\)
\(y\)\(83\)\(0\)\(-84\)\(-1\)


Vậy \(\left(x;y\right)\in\left\{\left(0;83\right),\left(83;0\right),\left(-1;-84\right),\left(-84;-1\right)\right\}\)
 

khổng Tuấn Minh
Xem chi tiết
Chi Trần Mai
Xem chi tiết
Nguyễn Phạm Hồng Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 6 2022 lúc 22:28

Câu 2: 

a: \(\Leftrightarrow-3x+6+5x-5=x-3\)

=>2x+1=x-3

hay x=-4

b: \(\Leftrightarrow x-\left[1-x-x-3+x\right]=2\left[x-2x+2\right]\)

\(\Leftrightarrow x-\left(-x-2\right)=2\left(-x+2\right)\)

=>2x+2=-2x+4

=>4x=2

hay x=1/2

c: \(\Leftrightarrow-3\left\{x+x-1-\left[-x+3-x\right]\right\}=5-\left[x\right]\)

\(\Leftrightarrow-3\left\{2x+1+2x-3\right\}=5-x\)

=>-3(4x-2)=5-x

=>-12x+6=5-x

=>-11x=-1

hay x=1/11

Steven
Xem chi tiết