(2017-1).(2017-3).(2017-5)x................(2017-n)(1009 thừa số)
Tính : \(A=\frac{\left(1+\frac{2017}{1}\right)\left(1+\frac{2017}{2}\right)...\left(1+\frac{2017}{1009}\right)}{\left(1+\frac{1009}{1}\right)\left(1+\frac{1009}{2}\right)...\left(1+\frac{1009}{2017}\right)}\)
Ta có: \(A=\frac{\left(1+\frac{2017}{1}\right)\left(1+\frac{2017}{2}\right)...\left(1+\frac{2017}{1009}\right)}{\left(1+\frac{1009}{1}\right)\left(1+\frac{1009}{2}\right)...\left(1+\frac{1009}{2017}\right)}=\frac{\frac{2017+1}{1}\frac{2017+2}{2}...\frac{2017+1009}{1009}}{\frac{1009+1}{1}\frac{1009+2}{2}...\frac{1009+2017}{2017}}\)
\(\Leftrightarrow A=\frac{\frac{2018.2019...3026}{1.2...1009}}{\frac{1010.1011...3026}{1.2...2017}}=\frac{2018.2019...3026}{1.2...1009}.\frac{1.2...2017}{1010.1011...3026}\)
\(\Leftrightarrow A=\frac{1.2...2017.2018.2019...3026}{1.2...1009.1010.1011...3026}=\frac{1.2.3...3026}{1.2.3...3026}=1.\)
cho M=1-1/2+1/3-1/4+...+1/2015-1/2016+1/2017
N= 1/1009+1/1010+....+1/2016+1/2017
tính (M-N)^2017
\(M=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}+\dfrac{1}{2017}\)
\(M=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2015}+\dfrac{1}{2017}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2016}\right)\)\(M=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2016}\right)\)\(M=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2008}\right)\)
\(M=\dfrac{1}{2009}+\dfrac{1}{2010}+...+\dfrac{1}{2016}+\dfrac{1}{2017}=N\)
Vậy \(\left(M-N\right)^{2017}=0\)
Tính nhanh :
a,2017 x 2021 - 4031 / 2020 + 2017 x 2018
b,2017 x 2019 + 1009 / 2019 x 4035 - 1
Tính nhanh :
a,2017 x 2021 - 4031 / 2020 + 2017 x 2018
b,2017 x 2019 + 1009 / 2019 x 4035 - 1
a, \(\dfrac{2017.2021-4031}{2020+2017.2018}\)
= \(\dfrac{2017\left(2018+3\right)-4031}{2020+2017.2018}\)
= \(\dfrac{2017.2018+2017.3-4031}{2020+2017.2018}\)
= \(\dfrac{2017.2018+2020}{2020+2017.2018}\)
= 1
@Nguyen Thi Ngoc Linh
Cho 2017 số nguyên dương \(a_1, a_2, a_3,..., a_{2017}\) thỏa mãn \(\dfrac{1}{a_1}+\dfrac{1}{a_2}+\dfrac{1}{a_3}+...+\dfrac{1}{a_{2017}}=1009\).Chứng minh rằng ít nhất 2 số trong 2017 số nguyên dương đã cho bằng nhau.
giá trị của biểu thức \(\frac{\left(1+\frac{2017}{1}\right)\left(1+\frac{2017}{2}\right)...\left(1+\frac{2017}{1009}\right)}{\left(1+\frac{1009}{1}\right)\left(1+\frac{1009}{2}\right)...\left(1+\frac{1009}{2007}\right)}\) là.....
\(\frac{\left(1+\frac{2017}{1}\right)\left(1+\frac{2017}{2}\right)....\left(1+\frac{2017}{1009}\right)}{\left(1+\frac{1009}{1}\right)\left(1+\frac{1009}{2}\right)....\left(1+\frac{1009}{2017}\right)}=\frac{1.1.1.....1}{1.1.1....1}=1\)
- Đề sai rồi : )
- Xem lại đề nha bạn #Thành
Cho : A = 2016 x 2016 x ... x 2016 ( A gồm 2015 thừa số )
B = 2017 x 2017 x .... x 2017 ( B gồm 2016 thừa số )
Cho : A = 2016 x 2016 x ... x 2016 ( A gồm 2015 thừa số )
B = 2017 x 2017 x .... x 2017 ( B gồm 2016 thừa số )
Hãy cho biết A + B có chia hết cho 5 không ? Vì sao ?
A = 2016 x 2016 x ... x 2016
= 20162015
= \(\overline{...6}\)
B = 2017 x 2017 x ... x 2017
= 20172016
= 2017504.4
= (20174)504
= (\(\overline{...1}\))504
= \(\overline{...1}\)
=> A + B = \(\overline{...6}+\overline{...1}=\overline{...7}\) không chia hết cho 5
@Cỏ Ba Lá
Cho 2017 số nguyên dương a1 ; a2 ... ; a2017
thỏa mãn \(\frac{1}{a_1}+...+\frac{1}{a_{2017}}=1009\)
cmr : cs ít nhất 2 số trong 2017 số nguyên đó bằng nhau