Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Văn Huy
Xem chi tiết
Duc Loi
25 tháng 6 2019 lúc 21:55

Ta có: \(A=\frac{\left(1+\frac{2017}{1}\right)\left(1+\frac{2017}{2}\right)...\left(1+\frac{2017}{1009}\right)}{\left(1+\frac{1009}{1}\right)\left(1+\frac{1009}{2}\right)...\left(1+\frac{1009}{2017}\right)}=\frac{\frac{2017+1}{1}\frac{2017+2}{2}...\frac{2017+1009}{1009}}{\frac{1009+1}{1}\frac{1009+2}{2}...\frac{1009+2017}{2017}}\)

\(\Leftrightarrow A=\frac{\frac{2018.2019...3026}{1.2...1009}}{\frac{1010.1011...3026}{1.2...2017}}=\frac{2018.2019...3026}{1.2...1009}.\frac{1.2...2017}{1010.1011...3026}\)

\(\Leftrightarrow A=\frac{1.2...2017.2018.2019...3026}{1.2...1009.1010.1011...3026}=\frac{1.2.3...3026}{1.2.3...3026}=1.\)

Hà Thanh
Xem chi tiết
 Mashiro Shiina
6 tháng 9 2017 lúc 13:07

\(M=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}+\dfrac{1}{2017}\)

\(M=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2015}+\dfrac{1}{2017}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2016}\right)\)\(M=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2016}\right)\)\(M=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2008}\right)\)

\(M=\dfrac{1}{2009}+\dfrac{1}{2010}+...+\dfrac{1}{2016}+\dfrac{1}{2017}=N\)

Vậy \(\left(M-N\right)^{2017}=0\)

Nguyen Thi Ngoc Linh
Xem chi tiết
Nguyen Thi Ngoc Linh
Xem chi tiết
Khánh Linh
4 tháng 8 2017 lúc 8:52

a, \(\dfrac{2017.2021-4031}{2020+2017.2018}\)

= \(\dfrac{2017\left(2018+3\right)-4031}{2020+2017.2018}\)

= \(\dfrac{2017.2018+2017.3-4031}{2020+2017.2018}\)

= \(\dfrac{2017.2018+2020}{2020+2017.2018}\)

= 1
@Nguyen Thi Ngoc Linh

Cuộc Sống
Xem chi tiết
đỗ văn thành
Xem chi tiết
Hà Hoàng Thịnh
25 tháng 10 2016 lúc 15:12

1

tick mình nha thank

đỗ văn thành
23 tháng 10 2016 lúc 10:19

\(\frac{\left(1+\frac{2017}{1}\right)\left(1+\frac{2017}{2}\right)....\left(1+\frac{2017}{1009}\right)}{\left(1+\frac{1009}{1}\right)\left(1+\frac{1009}{2}\right)....\left(1+\frac{1009}{2017}\right)}=\frac{1.1.1.....1}{1.1.1....1}=1\)

Dương Tử
3 tháng 12 2016 lúc 23:32

- Đề sai rồi : )
- Xem lại đề nha bạn #Thành

Cỏ Ba Lá
Xem chi tiết
Ma Đức Minh
18 tháng 8 2017 lúc 14:45

trả lời gì đây bạn

Cỏ Ba Lá
Xem chi tiết
Khánh Linh
18 tháng 8 2017 lúc 21:58

A = 2016 x 2016 x ... x 2016
= 20162015
= \(\overline{...6}\)
B = 2017 x 2017 x ... x 2017
= 20172016
= 2017504.4
= (20174)504
= (\(\overline{...1}\))504
= \(\overline{...1}\)
=> A + B = \(\overline{...6}+\overline{...1}=\overline{...7}\) không chia hết cho 5
@Cỏ Ba Lá

Trà Chanh ™
Xem chi tiết