1.2+2.3+......+18.19+19.20
tính tổng
Tính giá trị biẻu thức:
A= 1.2 + 2.3 +3.4 +...+ 18.19
=> 3A = 1.2. (3-0) +2.3.(4-1) + ...+18.19.(20-17)
=1.2.3-0.1.2+2.3.4-1.2.3+...+18.19.20-17.18.19
=(1.2.3-1.2.3)+(2.3.4-2.3.4)+...+(17.18.19-17.18.19)+18.19.20-0.1.2
=0+0+0+...+0+18.19.20
=18.19.20
=> A = 6.19.20= 114* 20= 2280
`A= 1.2 + 2.3 +3.4 +...+ 18.19`
`3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) +....+ 18.19.(20-17)`
`3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ....+ 18.19.20 - 17.18.19 `
`3A = 18.19.20`
`A = 6.19.20`
`A = 2280`
Đặt `A=1.2+2.3+...+18.19`
`3A=1.2(3-0)+2.3(4-1)+...+18.19(20-17)`
`3A=1.2.3-0.1.2+2.3.4-1.2.3+...+18.19.20-17.18.19`
`3A=18.19.20=6840`
\(\Rightarrow\) `A=6840/3`
\(\Rightarrow\) `A=2280`
`@Nae`
2/1.2 + 2/2.3 + 2/3.4 + .....+2/18.19 + 2/19.20
Đặt \(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{18.19}+\frac{2}{19.20}\)
\(\Rightarrow A=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(\Rightarrow A=2.\left(1-\frac{1}{20}\right)\)
\(\Rightarrow A=2.\frac{19}{20}\)
\(\Rightarrow A=\frac{19}{10}\)
2.(1/1.2+1/2.3+.....+1/18.19+1/19.20)
2.(1/1-1/2+1/2-1/3+......+1/19-1/20)
2.(1/1-1/20)= 2.19/20=19/10
Mỏi tay nhắm . không viết đầu bài đâu >.<
= \(2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\right)\)
= \(2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
= \(2\left(1-\frac{1}{20}\right)\)
= \(2.\frac{19}{20}\)
= \(\frac{19}{10}\)
Mị không chắc đâu :3
Cho A =1.2+2.3+3.4+...+18.19
Tính A
\(A=1.2+2.3+...+18.19\)
\(3A=1.2\left(3-0\right)+2.3\left(4-1\right)+...+18.19\left(20-17\right)\)
\(3A=1.2.3-0.1.2+2.3.4-1.2.3+...+18.19.20-17.18.19\)
\(3A=18.19.20=6840\)
\(\Rightarrow A=\dfrac{6840}{3}=2280\)
A=1/1.2+1/2.3+1/3.4+...+1/18.19+1/19.20
dạng tổng quát của mỗi phân số là 1/n(n+1) = 1/n -1/n+1
áp dụng vào làm với các phân số trong biểu thức cuối cùng còn 1-1/10=19/20
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+.....+\frac{2}{18.19}+\frac{2}{19.20}\)
Đặt \(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{18.19}+\frac{2}{19.20}\)
\(A=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\right)\)
\(A=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\right)\)
\(A=2\left(1-\frac{1}{20}\right)\)
\(A=2.\frac{19}{20}=\frac{19}{10}\)
Vậy ...
=2.(\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+......+\(\frac{1}{19.20}\))
=2.( 1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+..........+\(\frac{1}{19}\)-\(\frac{1}{20}\))
=2.(1-\(\frac{1}{20}\))
=2.\(\frac{19}{20}\)
= \(\frac{19}{10}\)
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{18.19}+\frac{2}{19.20}\)
\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(=2.\left(1-\frac{1}{20}\right)\)
\(=2\cdot\frac{19}{20}=\frac{19}{10}\)
Tính \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{18.19}+\frac{1}{19.20}\)
Lời giải:
$A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+....+\frac{19-18}{18.19}+\frac{20-19}{19.20}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}$
$=1-\frac{1}{20}=\frac{19}{20}$
Tính:
\frac{1^2}{1.2} . \frac{2^2}{2.3} ... \frac{17^2}{17.18}.\frac{18^2}{18.19}=1.212.2.322...17.18172.18.19182
Tính nhanh \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)
\(A=1-\frac{1}{20}\)
\(A=\frac{19}{20}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\)
\(=1-\frac{1}{20}\)
\(=\frac{19}{20}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)
\(A=1-\frac{1}{20}\)
\(A=\frac{19}{20}\)
Tính\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\)
Ta có:A: 1/1.2 +1/2.3 +1/3.4+...+1/18.19+1/19.20
=> A= 1-1/2 +1/2-1/3+1/3-1/4+...+1/18-1/19+1/19-1/20
=>A= 1-1/20=19/20