giai pt \(\sqrt[4]{2-x^4}=x^2-3x\) \(+3\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
giai pt sau
\(\sqrt{3x-1}-\sqrt{x+2}.\sqrt{3x^2+7x+2}+4=4x-2\)
\(x^2-5x+3.\sqrt{2x-1}=2.\sqrt{14-2x}+5\)
\(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
nhiều thế giải ko đổi đâu bạn
đkxđ : \(\frac{1}{2}\le x\le7\)
\(x^2-5x+3\sqrt{2x-1}=2\sqrt{14-2x}+5\)
\(\Leftrightarrow\left(x^2-5x\right)+3\left(\sqrt{2x-1}-3\right)=2\left(\sqrt{14-2x}-2\right)\)
\(\Leftrightarrow x\left(x-5\right)+\frac{3.\left(2x-10\right)}{\sqrt{2x-1}+3}+\frac{2.\left(2x-10\right)}{\sqrt{14-2x}+2}=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+\frac{6}{\sqrt{2x-1}+3}+\frac{4}{\sqrt{14-2x}+2}\right)=0\)
\(\Leftrightarrow x=5\)
còn bài a,c lười đánh lắm
1. Cho pt: x2 -2(m+1)x+m2=0 (1). Tìm m để pt có 2 nghiệm x1 ; x2 thỏa mãn (x1-m)2 + x2=m+2.
2. Giai pt: \(\left(x-1\right)\sqrt{2\left(x^2+4\right)}=x^2-x-2\)
3. Giai hệ pt: \(\left\{{}\begin{matrix}\frac{1}{\sqrt[]{x}}-\frac{\sqrt{x}}{y}=x^2+xy-2y^2\left(1\right)\\\left(\sqrt{x+3}-\sqrt{y}\right)\left(1+\sqrt{x^2+3x}\right)=3\left(2\right)\end{matrix}\right.\)
4. Giai pt trên tập số nguyên \(x^{2015}=\sqrt{y\left(y+1\right)\left(y+2\right)\left(y+3\right)}+1\)
Giai pt \(\left(x+5\right)\sqrt{x+1}+1=\sqrt[3]{3x+4}\)
Điều kiện \(x\ge-1\)
Phương trình đã cho tương đương với
\(\left(x+1\right)\sqrt{x+1}+4\sqrt{x+1}+1=\sqrt[3]{3x+4}\)
\(\Leftrightarrow\left(x+1\right)\sqrt{x+1}+4\sqrt{x+1}+1+3\left(x+1\right)+1=\sqrt[3]{3x+4}+\left(\sqrt[3]{3x+4}\right)^3\)
\(\Leftrightarrow\left(\sqrt{x+1}+1\right)^2+\left(\sqrt{x+1}+1\right)=\left(\sqrt[3]{3x+4}\right)^3+\sqrt[3]{3x+4}\) (*)
Xét hàm số f(t) =t3+t trên R
f'(t)=3t2+1>0 với mọi x \(\in\)R
Nên (*) \(\Leftrightarrow f\left(\sqrt{x+1}+1\right)=f\left(\sqrt[3]{3x+4}\right)\Leftrightarrow\sqrt{x+1}+1=\sqrt[3]{3x+4}\)
Đặt \(\left\{{}\begin{matrix}u=\sqrt{x+1}\\y=\sqrt[3]{3x+4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}u+1=v\\3u^2+1=v^3\end{matrix}\right.\)
\(\Rightarrow v^3=3\left(v-1\right)^2+1\Leftrightarrow v^3-1-3\left(v-1\right)^2=0\Leftrightarrow v=1\)
Với v=1 => x=-1
Vậy x=-1 là nghiệm của phương trình
giai pt \(x^2-3x=2\sqrt{x-1}-4\)
Giai pt \(a,4\sqrt{x+1}=x^2+5x+4\)
\(b,\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)
\(c,2x^2-5x+5=\sqrt{5x-1}\)
a/ Dặt \(\sqrt{x+1}=a\ge0\)
\(\Rightarrow4\sqrt{x+1}=x^2+5x+4\)
\(\Leftrightarrow4\sqrt{x+1}=\left(x+1\right)^2+3\left(x+1\right)\)
\(\Leftrightarrow4a=a^4+3a^2\)
\(\Leftrightarrow a\left(a-1\right)\left(a^2+a+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=0\\a=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=0\\\sqrt{x+1}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)
b/ Đặt \(\hept{\begin{cases}\sqrt{4x+1}=a\ge0\\\sqrt{3x-2}=b\ge0\end{cases}}\)
\(\Rightarrow a^2-b^2=x+3\)
Từ đây ta có:
\(a-b=\frac{a^2-b^2}{5}\)
\(\Leftrightarrow\left(a-b\right)\left(5-a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\left(1\right)\\a+b=5\left(2\right)\end{cases}}\)
Thế vô làm tiếp
c/
\(2x^2-5x+5=\sqrt{5x-1}\)
\(\Leftrightarrow\left(2x^2-5x+5\right)^2=5x-1\)
\(\Leftrightarrow4x^4-20x^3+45x^2-55x+26=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)\left(4x^2-8x+13\right)=0\)
Làm nốt
Giai pt:
a. \(3x^2+21x+18+2\sqrt{x^2+7x+7}=2\)
b. \(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
giải pt \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3x^2-3x+3}-\sqrt{x^2-3x+4}\)
Bạn tham khảo thêm ở link sau:
https://hoc24.vn/cau-hoi/giai-phuong-trinhsqrt3x2-5x1-sqrtx2-2sqrt3leftx2-x-1right-sqrtx2-3x4.167769342831
Giai pt \(\sqrt{3x+\sqrt{3}}-\sqrt{x-\sqrt{3}}=2\sqrt{x}\)
ĐKXĐ : \(x\ge\sqrt{3}\)
\(\sqrt{3x+\sqrt{3}}-\sqrt{x-\sqrt{3}}=2\sqrt{x}\)
\(\Leftrightarrow3x+\sqrt{3}-2\sqrt{\left(3x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}+x-\sqrt{3}=4x\)
\(\Leftrightarrow2\sqrt{\left(3x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+\sqrt{3}=0\\x-\sqrt{3}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-\sqrt{3}}{3}\left(ktm\right)\\x=\sqrt{3}\left(tm\right)\end{cases}}}\)
Vậy phương trình có nghiệm duy nhất là \(x=\sqrt{3}\)
đk: \(x\ge\sqrt{3}\)
Ta có: \(\sqrt{3x+\sqrt{3}}-\sqrt{x-\sqrt{3}}=2\sqrt{x}\)
\(\Leftrightarrow3x+\sqrt{3}-2\sqrt{\left(3x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}+x-\sqrt{3}=4x\)
\(\Leftrightarrow2\sqrt{\left(3x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}=0\)
\(\Leftrightarrow\left(3x+\sqrt{3}\right)\left(x-\sqrt{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+\sqrt{3}=0\\x-\sqrt{3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{\sqrt{3}}{3}\left(ktm\right)\\x=\sqrt{3}\left(tm\right)\end{cases}}\)
Vậy \(x=\sqrt{3}\)
ĐKXĐ: \(x\ge\sqrt{3}\)
\(\sqrt{3x+\sqrt{3}}=2\sqrt{x}+\sqrt{x-\sqrt{3}}\)
+) Xét \(2\sqrt{x}=\sqrt{x-\sqrt{3}}\Rightarrow4x=x-3\Leftrightarrow x=-1\)---> Không thỏa ĐKXĐ
Vậy \(2\sqrt{x}-\sqrt{x-\sqrt{3}}\ne0\)---> Ta dùng lượng liên hiệp:
\(\sqrt{3x+\sqrt{3}}=\frac{\left(2\sqrt{x}+\sqrt{x-\sqrt{3}}\right)\left(2\sqrt{x}-\sqrt{x-\sqrt{3}}\right)}{2\sqrt{x}-\sqrt{x-\sqrt{3}}}=\frac{4x-\left(x-\sqrt{3}\right)}{2\sqrt{x}-\sqrt{x-\sqrt{3}}}\)
\(\sqrt{3x+\sqrt{3}}=\frac{3x+\sqrt{3}}{2\sqrt{x}-\sqrt{x-\sqrt{3}}}\Leftrightarrow\sqrt{3x+\sqrt{3}}\left(1-\frac{\sqrt{3x+\sqrt{3}}}{2\sqrt{x}-\sqrt{x-\sqrt{3}}}\right)=0\)
Vì \(x\ge\sqrt{3}\Rightarrow\sqrt{3x+\sqrt{3}}>0\Rightarrow1-\frac{\sqrt{3x+\sqrt{3}}}{2\sqrt{x}-\sqrt{x-\sqrt{3}}}=0\)
\(\Leftrightarrow2\sqrt{x}-\sqrt{x-\sqrt{3}}=\sqrt{3x+\sqrt{3}}\Rightarrow3x+\sqrt{3}-4\sqrt{x}.\sqrt{x-\sqrt{3}}=3x+\sqrt{3}\)
\(\Leftrightarrow\sqrt{x}.\sqrt{x-\sqrt{3}}=0\Rightarrow\orbr{\begin{cases}x=0\\x=\sqrt{3}\end{cases}}\)
Vì x = 0 không thỏa ĐKXĐ vậy PT nhận nghiệm duy nhất là \(x=\sqrt{3}\)
giải pt: \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)