Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vodiem
Xem chi tiết
Thanh Tùng DZ
1 tháng 11 2019 lúc 16:50

nhiều thế giải ko đổi đâu bạn

Khách vãng lai đã xóa
vodiem
1 tháng 11 2019 lúc 18:47

vậy trả lời câu a thôi

Khách vãng lai đã xóa
Thanh Tùng DZ
1 tháng 11 2019 lúc 21:06

đkxđ : \(\frac{1}{2}\le x\le7\)

\(x^2-5x+3\sqrt{2x-1}=2\sqrt{14-2x}+5\)

\(\Leftrightarrow\left(x^2-5x\right)+3\left(\sqrt{2x-1}-3\right)=2\left(\sqrt{14-2x}-2\right)\)

\(\Leftrightarrow x\left(x-5\right)+\frac{3.\left(2x-10\right)}{\sqrt{2x-1}+3}+\frac{2.\left(2x-10\right)}{\sqrt{14-2x}+2}=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+\frac{6}{\sqrt{2x-1}+3}+\frac{4}{\sqrt{14-2x}+2}\right)=0\)

\(\Leftrightarrow x=5\)

còn bài a,c lười đánh lắm

Khách vãng lai đã xóa
Angela jolie
Xem chi tiết
Đức Anh Gamer
Xem chi tiết
Thy Anh Vũ
17 tháng 11 2021 lúc 20:33

Điều kiện \(x\ge-1\)

Phương trình đã cho tương đương với

\(\left(x+1\right)\sqrt{x+1}+4\sqrt{x+1}+1=\sqrt[3]{3x+4}\)

\(\Leftrightarrow\left(x+1\right)\sqrt{x+1}+4\sqrt{x+1}+1+3\left(x+1\right)+1=\sqrt[3]{3x+4}+\left(\sqrt[3]{3x+4}\right)^3\)

\(\Leftrightarrow\left(\sqrt{x+1}+1\right)^2+\left(\sqrt{x+1}+1\right)=\left(\sqrt[3]{3x+4}\right)^3+\sqrt[3]{3x+4}\) (*)

Xét hàm số f(t) =t3+t trên R

                   f'(t)=3t2+1>0 với mọi x \(\in\)R

Nên (*) \(\Leftrightarrow f\left(\sqrt{x+1}+1\right)=f\left(\sqrt[3]{3x+4}\right)\Leftrightarrow\sqrt{x+1}+1=\sqrt[3]{3x+4}\)

Đặt \(\left\{{}\begin{matrix}u=\sqrt{x+1}\\y=\sqrt[3]{3x+4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}u+1=v\\3u^2+1=v^3\end{matrix}\right.\)

\(\Rightarrow v^3=3\left(v-1\right)^2+1\Leftrightarrow v^3-1-3\left(v-1\right)^2=0\Leftrightarrow v=1\)

Với v=1 => x=-1

Vậy x=-1 là nghiệm của phương trình

le diep
Xem chi tiết
Quyết Tâm Chiến Thắng
Xem chi tiết
alibaba nguyễn
17 tháng 9 2019 lúc 8:42

a/ Dặt \(\sqrt{x+1}=a\ge0\)

\(\Rightarrow4\sqrt{x+1}=x^2+5x+4\)

\(\Leftrightarrow4\sqrt{x+1}=\left(x+1\right)^2+3\left(x+1\right)\)

\(\Leftrightarrow4a=a^4+3a^2\)

\(\Leftrightarrow a\left(a-1\right)\left(a^2+a+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=0\\a=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=0\\\sqrt{x+1}=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)

alibaba nguyễn
17 tháng 9 2019 lúc 8:48

b/ Đặt \(\hept{\begin{cases}\sqrt{4x+1}=a\ge0\\\sqrt{3x-2}=b\ge0\end{cases}}\)

\(\Rightarrow a^2-b^2=x+3\)

Từ đây ta có:

\(a-b=\frac{a^2-b^2}{5}\)

\(\Leftrightarrow\left(a-b\right)\left(5-a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\left(1\right)\\a+b=5\left(2\right)\end{cases}}\)

Thế vô làm tiếp

alibaba nguyễn
17 tháng 9 2019 lúc 8:52

c/

\(2x^2-5x+5=\sqrt{5x-1}\)

\(\Leftrightarrow\left(2x^2-5x+5\right)^2=5x-1\)

\(\Leftrightarrow4x^4-20x^3+45x^2-55x+26=0\)

\(\Leftrightarrow\left(x^2-3x+2\right)\left(4x^2-8x+13\right)=0\)

Làm nốt

Phạm Băng Băng
Xem chi tiết
Phạm Lan Hương
4 tháng 11 2019 lúc 23:14
https://i.imgur.com/oI2LtF1.jpg
Khách vãng lai đã xóa
Phạm Lan Hương
4 tháng 11 2019 lúc 23:06
https://i.imgur.com/XHY2tbJ.jpg
Khách vãng lai đã xóa
Thắng
Xem chi tiết
Akai Haruma
27 tháng 1 2022 lúc 13:27

Bạn tham khảo thêm ở link sau:

https://hoc24.vn/cau-hoi/giai-phuong-trinhsqrt3x2-5x1-sqrtx2-2sqrt3leftx2-x-1right-sqrtx2-3x4.167769342831

Tang Khanh Hung
Xem chi tiết
Nguyễn Việt Hoàng
21 tháng 9 2020 lúc 21:00

ĐKXĐ : \(x\ge\sqrt{3}\)

\(\sqrt{3x+\sqrt{3}}-\sqrt{x-\sqrt{3}}=2\sqrt{x}\)

\(\Leftrightarrow3x+\sqrt{3}-2\sqrt{\left(3x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}+x-\sqrt{3}=4x\)

\(\Leftrightarrow2\sqrt{\left(3x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x+\sqrt{3}=0\\x-\sqrt{3}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-\sqrt{3}}{3}\left(ktm\right)\\x=\sqrt{3}\left(tm\right)\end{cases}}}\)

Vậy phương trình có nghiệm duy nhất là \(x=\sqrt{3}\)

Khách vãng lai đã xóa
Nguyễn Minh Đăng
21 tháng 9 2020 lúc 21:05

đk: \(x\ge\sqrt{3}\)

Ta có: \(\sqrt{3x+\sqrt{3}}-\sqrt{x-\sqrt{3}}=2\sqrt{x}\)

\(\Leftrightarrow3x+\sqrt{3}-2\sqrt{\left(3x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}+x-\sqrt{3}=4x\)

\(\Leftrightarrow2\sqrt{\left(3x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}=0\)

\(\Leftrightarrow\left(3x+\sqrt{3}\right)\left(x-\sqrt{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x+\sqrt{3}=0\\x-\sqrt{3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{\sqrt{3}}{3}\left(ktm\right)\\x=\sqrt{3}\left(tm\right)\end{cases}}\)

Vậy \(x=\sqrt{3}\)

Khách vãng lai đã xóa
Nguyễn Ngọc Khanh (Team...
21 tháng 9 2020 lúc 21:17

ĐKXĐ: \(x\ge\sqrt{3}\)

\(\sqrt{3x+\sqrt{3}}=2\sqrt{x}+\sqrt{x-\sqrt{3}}\)

+) Xét \(2\sqrt{x}=\sqrt{x-\sqrt{3}}\Rightarrow4x=x-3\Leftrightarrow x=-1\)---> Không thỏa ĐKXĐ

Vậy \(2\sqrt{x}-\sqrt{x-\sqrt{3}}\ne0\)---> Ta dùng lượng liên hiệp:

\(\sqrt{3x+\sqrt{3}}=\frac{\left(2\sqrt{x}+\sqrt{x-\sqrt{3}}\right)\left(2\sqrt{x}-\sqrt{x-\sqrt{3}}\right)}{2\sqrt{x}-\sqrt{x-\sqrt{3}}}=\frac{4x-\left(x-\sqrt{3}\right)}{2\sqrt{x}-\sqrt{x-\sqrt{3}}}\)

\(\sqrt{3x+\sqrt{3}}=\frac{3x+\sqrt{3}}{2\sqrt{x}-\sqrt{x-\sqrt{3}}}\Leftrightarrow\sqrt{3x+\sqrt{3}}\left(1-\frac{\sqrt{3x+\sqrt{3}}}{2\sqrt{x}-\sqrt{x-\sqrt{3}}}\right)=0\)

Vì \(x\ge\sqrt{3}\Rightarrow\sqrt{3x+\sqrt{3}}>0\Rightarrow1-\frac{\sqrt{3x+\sqrt{3}}}{2\sqrt{x}-\sqrt{x-\sqrt{3}}}=0\)

\(\Leftrightarrow2\sqrt{x}-\sqrt{x-\sqrt{3}}=\sqrt{3x+\sqrt{3}}\Rightarrow3x+\sqrt{3}-4\sqrt{x}.\sqrt{x-\sqrt{3}}=3x+\sqrt{3}\)

\(\Leftrightarrow\sqrt{x}.\sqrt{x-\sqrt{3}}=0\Rightarrow\orbr{\begin{cases}x=0\\x=\sqrt{3}\end{cases}}\)

Vì x = 0 không thỏa ĐKXĐ vậy PT nhận nghiệm duy nhất là \(x=\sqrt{3}\)

Khách vãng lai đã xóa
Nguyễn An
Xem chi tiết