Tìm GTNN
J= x^2-8x+6/x^2-2x+1
Tìm x biết:
a) x(x-3)+2x-6=0
b) (x+1)2-4(x+1)=0
c) (2x+5)(4x+3)-8x(x+3)=10
a: \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
b: \(\left(x+1\right)^2-4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
Tìm GTNN B=3x^2 - 8x + 6/x^2 - 2x + 1
5.phân thức 4x/3 bằng với phân thức nào sau đây? A. -8x/6 b. 8x/6 c. 7x/6 D. 6/8x 6. Tìm điều kiện xác định của các phân thức sau A) x^2-1/x-2 b) 2x^2+3/x+1 7. Rút gọn các phân thức sau: A) 8x^3yz/24xy^2 b) 12x^4y^2z/x+1 8.thực hiện các phép tính sau: A) x^2+4/3x^2-6x + 5x+2/3x -4x/3x^2-6x
Câu 5: B
Câu 6:
a: ĐKXĐ: \(x-2\ne0\)
=>\(x\ne2\)
b: ĐKXĐ: \(x+1\ne0\)
=>\(x\ne-1\)
8:
\(A=\dfrac{x^2+4}{3x^2-6x}+\dfrac{5x+2}{3x}-\dfrac{4x}{3x^2-6x}\)
\(=\dfrac{x^2+4-4x}{3x\left(x-2\right)}+\dfrac{5x+2}{3x}\)
\(=\dfrac{\left(x-2\right)^2}{3x\left(x-2\right)}+\dfrac{5x+2}{3x}\)
\(=\dfrac{x-2+5x+2}{3x}=\dfrac{6x}{3x}=2\)
7:
\(\dfrac{8x^3yz}{24xy^2}\)
\(=\dfrac{8xy\cdot x^2z}{8xy\cdot3y}\)
\(=\dfrac{x^2z}{3y}\)
tìm gtnn của s=3x^2+8x+6/x^2+2x+1
\(S=\dfrac{3x^2+8x+6}{x^2+2x+1}=\dfrac{-2\left(x^2+2x+1\right)+x^2+4x+4}{x^2+2x+1}=-2+\left(\dfrac{x+2}{x+1}\right)^2\ge-2\)
\(S_{min}=-2\) khi \(x=-2\)
Tìm x biết:
a, 16x² – 9(x + 1)²= 0
b, x2 (x – 1) – 4x2 + 8x – 4 = 0
c, x(2x – 3) – 2(3 – 2x) = 0
d, (x – 3)(x² + 3x + 9) – x(x + 2)(x – 2) = 1
e, 4x² + 4x – 6 = 2
f, 2x² + 7x + 3 = 0
e: ta có: \(4x^2+4x-6=2\)
\(\Leftrightarrow4x^2+4x-8=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
f: Ta có: \(2x^2+7x+3=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Tìm x biết:
a) (x+5).(2x+1)=0
b) x.(x+2)-3.(x+2)=0
c) 2x.(x-5)-x.(3+2x)=26
d) x2-10x-8x+16=0
e) x2-10x=25
f) 5x.(x-1)=x-1
g) 2.(x+5)-x2-5x=0
h) x2+5x-6=0
i) (2x-3)2-4.(x+1).(x-1)=49
j) x3+x2+x+1=0
k) x3-x2=4x2-8x+4
Mn ơi giúp em vs ạ,em cảm ơn trc ạ
\(a,\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{2}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\\ c,\Leftrightarrow2x^2-10x-3x-2x^2=26\\ \Leftrightarrow-13x=26\Leftrightarrow x=-2\\ d,\Leftrightarrow x^2-18x+16=0\\ \Leftrightarrow\left(x^2-18x+81\right)-65=0\\ \Leftrightarrow\left(x-9\right)^2-65=0\\ \Leftrightarrow\left(x-9+\sqrt{65}\right)\left(x-9-\sqrt{65}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=9-\sqrt{65}\\9+\sqrt{65}\end{matrix}\right.\)
\(e,\Leftrightarrow x^2-10x-25=0\\ \Leftrightarrow\left(x-5\right)^2-50=0\\ \Leftrightarrow\left(x-5-5\sqrt{2}\right)\left(x-5+5\sqrt{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5+5\sqrt{2}\\x=5-5\sqrt{2}\end{matrix}\right.\\ f,\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ g,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ h,\Leftrightarrow x^2+2x+3x+6=0\\ \Leftrightarrow\left(x+3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\\ i,\Leftrightarrow4x^2-12x+9-4x^2+4=49\\ \Leftrightarrow-12x=36\Leftrightarrow x=-3\)
\(j,\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\\ k,\Leftrightarrow x^2\left(x-1\right)=4\left(x-1\right)^2\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(P=\frac{2x^5-x^4-2x+1}{4x^2-1}+\frac{8x^2-4x+2}{8x^3+1}\)
Mik đã rút gọn đi thành\(\frac{x^4+1}{2x+1}\)các bạn giúp mik tìm x biết P= 6 nhé
Tìm GTNN của BT sau: \(\dfrac{3x^2-8x+6}{x^2-2x+1}\)
\(S=\dfrac{3x^2-8x+6}{x^2-2x+1}=\dfrac{2x^2-4x+2+x^2-4x+4}{x^2-2x+1}\)
\(=\dfrac{2\left(x-1\right)^2+\left(x-2\right)^2}{\left(x-1\right)^2}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)
=> MIN S = 2
Dấu "=" xảy ra <=> x - 2 = 0
<=> x = 2
Vậy Min S = 2 khi x = 2
Tìm x biết.
a)(x+2)3-x2(x+6)=0
b) (2x+3)3-8x(x-1)(x+1)=9x(4x-3)
c)(2-x)3+(2+x)3-12x(x+1)=0
a) \(\left(x+2\right)^3-x^2\left(x+6\right)=0\)
\(\Leftrightarrow x^3+6x^2+12x+8-x^3-6x^2=0\)
\(\Leftrightarrow12x+8=0\)
\(\Leftrightarrow12x=-8\)
\(\Leftrightarrow x=-\dfrac{8}{12}\)
\(\Leftrightarrow x=-\dfrac{2}{3}\)
b) \(\left(2x+3\right)^3-8x\left(x+1\right)\left(x-1\right)=9x\left(4x-3\right)\)
\(\Leftrightarrow8x^3+36x^2+54x+27-8x\left(x^2-1\right)=36x^2-27x\)
\(\Leftrightarrow8x^3+36x^2+54x+27-8x^3+8x=36x^2-27x\)
\(\Leftrightarrow8x^3-8x^3+36x^2-36x^2+54x+27x+8x+27=0\)
\(\Leftrightarrow89x+27=0\)
\(\Leftrightarrow x=-\dfrac{27}{89}\)
c) \(\left(2-x\right)^3+\left(2+x\right)^3-12x\left(x+1\right)=0\)
\(\Leftrightarrow8-12x+6x^2-x^3+8+12x+6x^2+x^3-12x^2-12x=0\)
\(\Leftrightarrow\left(x^3-x^3\right)+\left(6x^2+6x^2-12x^2\right)-\left(12x-12x\right)+12x+\left(8+8\right)=0\)
\(\Leftrightarrow12x+16=0\)
\(\Leftrightarrow x=-\dfrac{16}{12}\)
\(\Leftrightarrow x=-\dfrac{4}{3}\)
`#040911`
`a)`
`(x + 2)^3 - x^2(x + 6) = 0`
`<=> x^3 + 6x^2 + 12x + 8 - x^3 - 6x^2 = 0`
`<=> (x^3 - x^3) + (6x^2 - 6x^2) + 12x = 0`
`<=> 12x = 0`
`<=> x = 0`
Vậy, `x = 0.`
`b)`
`(2x + 3)^3 - 8x(x - 1)(x + 1) = 9x(4x - 3)`
`<=> 8x^3 + 36x^2 + 54x + 27 - 8x(x^2 - 1) = 36x^2 - 27x`
`<=> 8x^3 + 36x^2 + 54x + 27 - 8x^3 + 8x - 36x^2 + 27x = 0`
`<=> (8x^3 - 8x^3) + (36x^2 - 36x^2) + (54x + 8x + 27x) + 27 = 0`
`<=> 89x + 27 = 0`
`<=> 89x = -27`
`<=> x = -27/89`
Vậy, `x = -27/89`
`c)`
`(2 - x)^3 + (2 + x)^3 - 12x(x + 1) = 0`
`<=> 8 - 12x + 6x^2 - x^3 + 8 + 12x + 6x^2 + x^3 - 12x^2 - 12x = 0`
`<=> (-x^3 + x^3) + (12x - 12x - 12x) + (6x^2 + 6x^2 - 12x^2) + (8 + 8)=0`
`<=> -12x + 16 = 0`
`<=> -12x = -16`
`<=> 12x = 16`
`<=> x=4/3`
Vậy, `x = 4/3.`