Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Rio Va
Xem chi tiết
vũ xuân
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 6 2019 lúc 19:12

a/ BĐT sai, cho \(a=b=c=2\) là thấy

b/ \(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)

\(VT\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{3\left(a+b+c\right)^2}=\frac{1}{3}\left(a^2+b^2+c^2\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

c/ Tiếp tục sai nữa, vế phải là \(\frac{3}{2}\) chứ ko phải \(2\), và hy vọng rằng a;b;c dương

\(VT=\frac{a^2}{abc.b+a}+\frac{b^2}{abc.c+b}+\frac{c^2}{abc.a+c}\ge\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+a+b+c}\)

\(VT\ge\frac{9}{3abc+3}\ge\frac{9}{\frac{3\left(a+b+c\right)^3}{27}+3}=\frac{9}{\frac{3.3^3}{27}+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Nguyễn Việt Lâm
23 tháng 6 2019 lúc 14:52

Ta có:

\(a^3+b^3+b^3\ge3ab^2\) ; \(b^3+c^3+c^3\ge3bc^2\) ; \(c^3+a^3+a^3\ge3ca^2\)

Cộng vế với vế \(\Rightarrow a^3+b^3+c^3\ge ab^2+bc^2+ca^2\)

\(\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}=\frac{a^6}{ab^2}+\frac{b^6}{bc^2}+\frac{c^6}{ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab^2+bc^2+ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)

Ngu Người
Xem chi tiết
Thầy Giáo Toán
28 tháng 8 2015 lúc 7:39

Ta áp dụng bất đẳng thức phụ sau đây liên tiếp: \(x^2+y^2+z^2\ge xy+yz+zx\leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0.\)

Khi đó    \(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\ge a^2b^4c^2+a^2b^2c^4+a^4b^2c^2\)

\(=a^2b^2c^2\left(a^2+b^2+c^2\right)\ge a^2b^2c^2\left(ab+bc+ca\right)\)

Vậy ta có \(a^8+b^8+c^8\ge a^2b^2c^2\left(ab+bc+ca\right)\to\frac{a^8+b^8+c^8}{a^3b^3c^3}\ge\frac{ab+bc+ca}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Tuyển Trần Thị
Xem chi tiết
Nguyễn Thiều Công Thành
1 tháng 10 2017 lúc 19:39

easy

\(VT\ge\frac{8}{\left(a+b\right)^2+\left(a+b\right)^2c}+\frac{8}{\left(b+c\right)^2+\left(b+c\right)^2c}+\frac{8}{\left(c+a\right)^2+\left(c+a\right)^2b}+\frac{\left(a+b\right)^2}{4}+\frac{\left(b+c\right)^2}{4}+\frac{\left(c+a\right)^2}{4}\)

\(=\frac{8}{\left(a+b\right)^2\left(c+1\right)}+\frac{8}{\left(b+c\right)^2\left(a+1\right)}+\frac{8}{\left(c+a\right)^2\left(b+1\right)}+\frac{\left(a+b\right)^2}{4}+\frac{\left(b+c\right)^2}{4}+\frac{\left(c+a\right)^2}{4}\)

đến đây ghép rồi dùng cô si

bài này trong đề thi của tỉnh nào đó ở nước nào đó ở hành tinh nào đó năm 2016-2017

trần gia bảo
13 tháng 4 2019 lúc 22:54

bạn làm luôn khúc sau dùm mik nhé, mik ko hiểu

Kiệt Nguyễn
10 tháng 7 2020 lúc 19:43

Ta có bất đẳng thức quen thuộc sau \(4ab\le\left(a+b\right)^2\). Như vậy thì:\(\frac{8}{\left(a+b\right)^2+4abc}\ge\frac{8}{\left(a+b\right)^2+c\left(a+b\right)^2}\)\(=\frac{8}{\left(c+1\right)\left(a+b\right)^2}\)

 Lại có \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)nên \(\frac{8}{\left(a+b\right)^2+4abc}+\frac{a^2+b^2}{2}\)\(\ge\frac{8}{\left(c+1\right)\left(a+b\right)^2}+\frac{\left(a+b\right)^2}{4}\ge\frac{2\sqrt{2}}{\sqrt{c+1}}\)(Theo BĐT AM - GM)

Lại áp dụng BĐT AM - GM, ta được: \(\frac{2\sqrt{2}}{\sqrt{c+1}}=\frac{8}{2\sqrt{2\left(c+1\right)}}\ge\frac{8}{c+3}\)

Từ đó suy ra \(\frac{8}{\left(a+b\right)^2+4abc}+\frac{a^2+b^2}{2}\ge\frac{8}{c+3}\)(1)

Tương tự, ta có: \(\frac{8}{\left(b+c\right)^2+4abc}+\frac{b^2+c^2}{2}\ge\frac{8}{a+3}\)(2) ; \(\frac{8}{\left(c+a\right)^2+4abc}+\frac{c^2+a^2}{2}\ge\frac{8}{b+3}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{8}{\left(a+b\right)^2+4abc}+\frac{8}{\left(b+c\right)^2+4abc}+\frac{8}{\left(c+a\right)^2+4abc}\)\(+a^2+b^2+c^2\ge\frac{8}{a+3}+\frac{8}{b+3}+\frac{8}{c+3}\)

Đẳng thức xảy ra khi a = b = c = 1

Khách vãng lai đã xóa
Hà Lê
Xem chi tiết
Thắng Nguyễn
12 tháng 7 2017 lúc 18:57

hình như dấu + dưới mẫu là nhân mới đúng

dbrby
Xem chi tiết
Trần Phúc Khang
4 tháng 7 2019 lúc 16:13

Ta có \(\frac{1}{a^3}+\frac{1}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)

\(\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge\frac{3}{b^2c}\)

..............................

=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\ge\frac{1}{a^2b}+\frac{1}{b^2c}+\frac{1}{c^2d}+\frac{1}{d^2a}\left(1\right)\)

Áp dụng bđt cosi ta có

\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)

\(\frac{b^2}{c^5}+\frac{1}{b^2c}\ge\frac{2}{c^3}\)

\(\frac{c^2}{d^5}+\frac{1}{c^2d}\ge\frac{2}{d^3}\)

\(\frac{d^2}{a^5}+\frac{1}{d^2a}\ge\frac{2}{a^3}\)

Cộng vế của các bđt trên và kết hợp với (1)

=> ĐPCM

Dấu bằng xảy ra khi a=b=c

Upin & Ipin
Xem chi tiết
Phùng Minh Quân
1 tháng 1 2020 lúc 18:14

<3 

Cần CM: \(\frac{a}{\left(1-a\right)^3}\ge\frac{135}{16}a-\frac{27}{16}\)\(\left(0< a< 1\right)\)

thaajt vậy, bđt \(\Leftrightarrow\)\(\left(a-\frac{1}{3}\right)^2\left(15a^2-38a+27\right)\ge0\) đúng 

\(\Sigma\frac{a}{\left(b+c\right)^3}=\Sigma\frac{a}{\left(1-a\right)^3}\ge\frac{135}{16}\left(a+b+c\right)-\frac{81}{16}=\frac{27}{8}\)

dấu "=" xảy ra khi a=b=c=1 

Khách vãng lai đã xóa
Phùng Minh Quân
1 tháng 1 2020 lúc 18:15

à nhầm, \(a=b=c=\frac{1}{3}\)

Khách vãng lai đã xóa
Trung Nguyen
Xem chi tiết
Trung Nguyen
Xem chi tiết