cho a,b,c>0. CMR
\(\frac{a^8}{b^3}+\frac{b^8}{c^3}+\frac{c^8}{a^3}\ge a^5+b^5+c^5\)
cho số thực a,b,c>0. CMR
\(\frac{8}{\left(a+b\right)^2+4abc}+\frac{8}{\left(b+c\right)^2+4abc}+\frac{8}{\left(c+a\right)^2+4abc}+a^2+b^2+c^2\ge\frac{8}{a+3}+\frac{8}{b+3}+\frac{8}{c+3}\)
cần giúp
1.Cho a,b,c>0. CMR:\(\frac{a^5}{b^5}+\frac{b^5}{c^5}+\frac{c^5}{a^5}\ge a^3+b^3+c^3\)
2.Cho a,b,c>0. CMR: \(\frac{a^3}{a+2b}+\frac{b^3}{b+2c}+\frac{c^3}{c+2a}\ge\frac{1}{3}\left(a^2+b^2+c^2\right)\)
3.Cho a,b,c thỏa mãn a+b+c=3. CMR: \(\frac{a}{b^2c+1}+\frac{b}{c^2a+1}+\frac{c}{a^2b+1}\ge2\)
a/ BĐT sai, cho \(a=b=c=2\) là thấy
b/ \(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)
\(VT\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{3\left(a+b+c\right)^2}=\frac{1}{3}\left(a^2+b^2+c^2\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
c/ Tiếp tục sai nữa, vế phải là \(\frac{3}{2}\) chứ ko phải \(2\), và hy vọng rằng a;b;c dương
\(VT=\frac{a^2}{abc.b+a}+\frac{b^2}{abc.c+b}+\frac{c^2}{abc.a+c}\ge\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+a+b+c}\)
\(VT\ge\frac{9}{3abc+3}\ge\frac{9}{\frac{3\left(a+b+c\right)^3}{27}+3}=\frac{9}{\frac{3.3^3}{27}+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có:
\(a^3+b^3+b^3\ge3ab^2\) ; \(b^3+c^3+c^3\ge3bc^2\) ; \(c^3+a^3+a^3\ge3ca^2\)
Cộng vế với vế \(\Rightarrow a^3+b^3+c^3\ge ab^2+bc^2+ca^2\)
\(\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}=\frac{a^6}{ab^2}+\frac{b^6}{bc^2}+\frac{c^6}{ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab^2+bc^2+ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)
cho a,b,c>0 CMR:\(\frac{a^8+b^8+c^8}{\left(abc\right)^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Ta áp dụng bất đẳng thức phụ sau đây liên tiếp: \(x^2+y^2+z^2\ge xy+yz+zx\leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0.\)
Khi đó \(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\ge a^2b^4c^2+a^2b^2c^4+a^4b^2c^2\)
\(=a^2b^2c^2\left(a^2+b^2+c^2\right)\ge a^2b^2c^2\left(ab+bc+ca\right)\).
Vậy ta có \(a^8+b^8+c^8\ge a^2b^2c^2\left(ab+bc+ca\right)\to\frac{a^8+b^8+c^8}{a^3b^3c^3}\ge\frac{ab+bc+ca}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
cho a,b ,c deu duong .cmr
\(\frac{8}{\left(a+b\right)^2+4abc}+\frac{8}{\left(b+c\right)^2+4abc}+\frac{8}{\left(a+c\right)^2+4abc}+a^2+b^2+c^2\ge\frac{8}{a+3}+\frac{8}{b+3}+\frac{8}{c+3}\)
easy
\(VT\ge\frac{8}{\left(a+b\right)^2+\left(a+b\right)^2c}+\frac{8}{\left(b+c\right)^2+\left(b+c\right)^2c}+\frac{8}{\left(c+a\right)^2+\left(c+a\right)^2b}+\frac{\left(a+b\right)^2}{4}+\frac{\left(b+c\right)^2}{4}+\frac{\left(c+a\right)^2}{4}\)
\(=\frac{8}{\left(a+b\right)^2\left(c+1\right)}+\frac{8}{\left(b+c\right)^2\left(a+1\right)}+\frac{8}{\left(c+a\right)^2\left(b+1\right)}+\frac{\left(a+b\right)^2}{4}+\frac{\left(b+c\right)^2}{4}+\frac{\left(c+a\right)^2}{4}\)
đến đây ghép rồi dùng cô si
bài này trong đề thi của tỉnh nào đó ở nước nào đó ở hành tinh nào đó năm 2016-2017
bạn làm luôn khúc sau dùm mik nhé, mik ko hiểu
Ta có bất đẳng thức quen thuộc sau \(4ab\le\left(a+b\right)^2\). Như vậy thì:\(\frac{8}{\left(a+b\right)^2+4abc}\ge\frac{8}{\left(a+b\right)^2+c\left(a+b\right)^2}\)\(=\frac{8}{\left(c+1\right)\left(a+b\right)^2}\)
Lại có \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)nên \(\frac{8}{\left(a+b\right)^2+4abc}+\frac{a^2+b^2}{2}\)\(\ge\frac{8}{\left(c+1\right)\left(a+b\right)^2}+\frac{\left(a+b\right)^2}{4}\ge\frac{2\sqrt{2}}{\sqrt{c+1}}\)(Theo BĐT AM - GM)
Lại áp dụng BĐT AM - GM, ta được: \(\frac{2\sqrt{2}}{\sqrt{c+1}}=\frac{8}{2\sqrt{2\left(c+1\right)}}\ge\frac{8}{c+3}\)
Từ đó suy ra \(\frac{8}{\left(a+b\right)^2+4abc}+\frac{a^2+b^2}{2}\ge\frac{8}{c+3}\)(1)
Tương tự, ta có: \(\frac{8}{\left(b+c\right)^2+4abc}+\frac{b^2+c^2}{2}\ge\frac{8}{a+3}\)(2) ; \(\frac{8}{\left(c+a\right)^2+4abc}+\frac{c^2+a^2}{2}\ge\frac{8}{b+3}\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{8}{\left(a+b\right)^2+4abc}+\frac{8}{\left(b+c\right)^2+4abc}+\frac{8}{\left(c+a\right)^2+4abc}\)\(+a^2+b^2+c^2\ge\frac{8}{a+3}+\frac{8}{b+3}+\frac{8}{c+3}\)
Đẳng thức xảy ra khi a = b = c = 1
cho a,b,c>0. chứng minh: \(\frac{a^8+b^8+c^8}{a^3+b^3+c^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
hình như dấu + dưới mẫu là nhân mới đúng
cho a,b,c>0 . Cmr: \(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
(sử dụng AM-GM)
Ta có \(\frac{1}{a^3}+\frac{1}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)
\(\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge\frac{3}{b^2c}\)
..............................
=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\ge\frac{1}{a^2b}+\frac{1}{b^2c}+\frac{1}{c^2d}+\frac{1}{d^2a}\left(1\right)\)
Áp dụng bđt cosi ta có
\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)
\(\frac{b^2}{c^5}+\frac{1}{b^2c}\ge\frac{2}{c^3}\)
\(\frac{c^2}{d^5}+\frac{1}{c^2d}\ge\frac{2}{d^3}\)
\(\frac{d^2}{a^5}+\frac{1}{d^2a}\ge\frac{2}{a^3}\)
Cộng vế của các bđt trên và kết hợp với (1)
=> ĐPCM
Dấu bằng xảy ra khi a=b=c
cho a,b,c>0 va a+b+c=1. CMR
\(\frac{a}{\left(b+c\right)^3}+\frac{b}{\left(a+c\right)^3}+\frac{c}{\left(a+b\right)^3}\ge\frac{27}{8\left(a+b+c\right)^2}\)
<3
Cần CM: \(\frac{a}{\left(1-a\right)^3}\ge\frac{135}{16}a-\frac{27}{16}\)\(\left(0< a< 1\right)\)
thaajt vậy, bđt \(\Leftrightarrow\)\(\left(a-\frac{1}{3}\right)^2\left(15a^2-38a+27\right)\ge0\) đúng
\(\Sigma\frac{a}{\left(b+c\right)^3}=\Sigma\frac{a}{\left(1-a\right)^3}\ge\frac{135}{16}\left(a+b+c\right)-\frac{81}{16}=\frac{27}{8}\)
dấu "=" xảy ra khi a=b=c=1
à nhầm, \(a=b=c=\frac{1}{3}\)
Cho a;b;c>0:abc=1.CMR:
\(\sqrt[3]{\frac{b+c}{2a}}+\sqrt[3]{\frac{c+a}{2b}}+\sqrt[3]{\frac{a+b}{2c}}\le\frac{5\left(a+b+c\right)+9}{8}\)
Cho \(a;b;c>0:abc=1.\)CMR:
\(\sqrt[3]{\frac{b+c}{2a}}+\sqrt[3]{\frac{c+a}{2b}}+\sqrt[3]{\frac{a+b}{2c}}\le\frac{5\left(a+b+c\right)+9}{8}\)