Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thanh Hà
Xem chi tiết
fairy
1 tháng 7 2017 lúc 22:46

a2+b2+c2=ab+bc+ca

<=>2a2+2b2+2c2=2ab+2bc+2ca

<=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2)=0

<=>(a-b)2+(b-c)2+(c-a)2=0

<=>a=b=c

mà a+b+c=3<=>a=b=c=1

=>P=0

trần gia bảo
20 tháng 9 2018 lúc 21:02

P=2017 chứ bạn

Tiểu Thư Ma Kết
Xem chi tiết
Nguyễn Hoàng Tú
Xem chi tiết
Nguyễn Hà Giang
Xem chi tiết
tuan tran
Xem chi tiết
Học Sinh Ham Chơi
4 tháng 3 2018 lúc 20:25

Ta có :

a^2>hoặc=0(vì mang số mũ dương)

Tương tự => b^2 và c ^2 như a^2

mà a^2+b^2+c^2=1=>a=b=c=1

=> a^2016+b^2017+c^2018=1

zZz Cool Kid_new zZz
23 tháng 7 2020 lúc 22:40

Mình nghĩ \(a+b+c=1\) nữa chắc oke hơn :3

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\Rightarrow1-3abc=1-ab-bc-ca\Rightarrow3abc=ab+bc+ca\)

\(1=\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(=1+2\left(ab+bc+ca\right)\)

\(\Rightarrow ab+bc+ca=0\Rightarrow3abc=0\)

Nếu \(a=0\Rightarrow b+c=1;b^2+c^2=1;b^3+c^3=1\)

\(\Rightarrow b^2+2bc+c^2=1\Rightarrow2bc=0\Rightarrow b=0\left(h\right)c=0\)

Cứ tiếp tục thì sẽ ra nhá :))

Khách vãng lai đã xóa
Ngô thị huệ
Xem chi tiết
Xyz OLM
18 tháng 2 2020 lúc 22:31

\(A=\frac{1}{2018}+\frac{2}{2017}+...+\frac{2017}{2}+2018\)

\(=\left(\frac{1}{2018}+1\right)+\left(1+\frac{2}{2017}\right)+...+\left(\frac{2017}{2}+1\right)+1\)(2018 số hạng 1)

\(=\frac{2019}{2018}+\frac{2019}{2017}+...+\frac{2019}{2}+\frac{2019}{2019}=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)\)

Mà \(B=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\)

=> Khi đó : \(\frac{A}{B}=\frac{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}=2019\)

Khách vãng lai đã xóa
Nguyễn Thảo Nhi
21 tháng 2 2021 lúc 21:30

??????????????????????????????????????????????????????????????????????????????????????????????????????????????

Khách vãng lai đã xóa
Đỗ Tiến Tuân
Xem chi tiết
Minh Tú sét boi
7 tháng 1 2023 lúc 23:07

\(\dfrac{a}{2016}=\dfrac{b}{2017}=\dfrac{c}{2018}=\dfrac{a-c}{2016-2018}=\dfrac{a-b}{2016-2017}=\dfrac{b-c}{2017-2018}\)

\(\rightarrow\dfrac{a-c}{-2}=\dfrac{a-b}{-1}=\dfrac{b-c}{-1}\)

\(\rightarrow a-c=2\cdot\left(a-b\right)=2\cdot\left(b-c\right)\)

\(\rightarrow\left(a-c\right)^3=\left[2\cdot\left(a-b\right)\right]^2\cdot2\cdot\left(b-c\right)\)

\(\Rightarrow\left(a-c\right)^3=8\cdot\left(a-b\right)^2\cdot\left(b-c\right)\)

Ánh Dương
Xem chi tiết
Ánh Dương
12 tháng 11 2017 lúc 22:35

help me

Linh Nhân
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 12 2022 lúc 19:58

Đặt a/2016=b/2017=c/2018=k

=>a=2016k; b=2017k; c=2018k

(a-c)^3=(2016k-2018k)^3=(-2k)^3=-8k^3

8(a-b)^2*(a-b)

=8(a-b)^3

=8(2016k-2017k)^3

=-8k^3

=(a-c)^3