{3x+y=16 2x-y=-1
y= √2+x - √2-x
y= trị tuyệt đối x x+x³
y= trị tuyệt đối 1-2x +1+2x / x²
y= trị tuyệt đối 9-3x + 9+3x / x³
y= √4x-16 / √x+3
a. 3x^2-3y^2-x-y
b. 2x^2+4xy-16+2y^2
c. -x^2-x+2
d. 3x^2-7x+4
e.-2x^2+3x-1
f. x^2+2xy+y^2-2x-2y
g.x^3-2x^2+1
h.4x^2-3x-1
k. 2x^2+5x+3
l. x^2-2x-y^2+1
a) \(3x^2-3y^2-x-y\)
\(\Leftrightarrow3\left(x^2-y^2\right)-x-y\)
\(\Leftrightarrow3\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(\Leftrightarrow3\left(x-y\right)\)
d) \(3x^2-7x+4\)
\(\Leftrightarrow3x^2-7x+7-3\)
\(\Leftrightarrow\left(3x^2-3\right)-\left(7x-7\right)\)
\(\Leftrightarrow3\left(x^2-1\right)-7\left(x-1\right)\)
\(\Leftrightarrow3\left(x-1\right)\left(x+1\right)-7\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(3\left(x+1\right)-7\right)\)
\(\Leftrightarrow\left(x+1\right)\left(3x-6\right)\)
e) \(-2x^2+3x-1\)
\(\Leftrightarrow\left(-2x^2-1^2\right)+3x\)
\(\Leftrightarrow\left(-2x-1\right)\left(-2x+1\right)+3x\)
f) \(x^2+2xy+y^2-2x-2y\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)\)
k) \(2x^2+5x+3\)
\(\Leftrightarrow2x^2+2x+3x+3\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)\)
\(\Leftrightarrow\left(2x+3\right)\left(x+1\right)\)
l) \(x^2-2x-y^2+1\)
\(\Leftrightarrow\left(x^2-2x+1\right)-y^2\)
\(\Leftrightarrow\left(x-1\right)^2-y^2\)
\(\Leftrightarrow\left(x-1-y\right)\left(x-1+y\right)\)
a) \(3x^2-3y^2-x-y\)
\(\Leftrightarrow3\left(x^2-y^2\right)-x-y\)
\(\Leftrightarrow3\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(\Leftrightarrow3\left(x-y\right)\)
d) \(3x^2-7x+4\)
\(\Leftrightarrow3x^2-7x+7-3\)
\(\Leftrightarrow\left(3x^2-3\right)-\left(7x-7\right)\)
\(\Leftrightarrow3\left(x^2-1\right)-7\left(x-1\right)\)
\(\Leftrightarrow3\left(x-1\right)\left(x+1\right)-7\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(3\left(x+1\right)-7\right)\)
\(\Leftrightarrow\left(x+1\right)\left(3x-6\right)\)
e) \(-2x^2+3x-1\)
\(\Leftrightarrow\left(-2x^2-1^2\right)+3x\)
\(\Leftrightarrow\left(-2x-1\right)\left(-2x+1\right)+3x\)
f) \(x^2+2xy+y^2-2x-2y\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)\)
k) \(2x^2+5x+3\)
\(\Leftrightarrow2x^2+2x+3x+3\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)\)
\(\Leftrightarrow\left(2x+3\right)\left(x+1\right)\)
l) \(x^2-2x-y^2+1\)
\(\Leftrightarrow\left(x^2-2x+1\right)-y^2\)
\(\Leftrightarrow\left(x-1\right)^2-y^2\)
\(\Leftrightarrow\left(x-1-y\right)\left(x-1+y\right)\)
1, x/-2 = y/5 và x + y = 12
2, x/3 = y/2 và 2x + 5y = 32
3, x/3 = y/3 và 2x + 4y = 28
4, x/3 = 4/16 và 3x - y = 35
8. 3x = 5y và x + y = 40
chứng minh biểu thức sau không phụ thuộc vào biến x
x(3x^2-x+5)(2x^3+3x+16)(x^2-x+2)(y-5)(y+8)(y+4)(y-1)
v` đề ảo quá bạn mk tính mãi ko ra chắc chết ms ra
Bài 3:Chứng minh biểu thức không phụ thuộc vào biến
1, (y-5)(y+8)-(y+4)(y-1)
2, y\(^4\)- (y\(^2\)+1)(y\(^2\)-1)
3, x(y-z) + y(z-x) +z(x-y)
4, x(y+z-yz) -y(z+x-xz)+z(y-x)
5, x(2x+1) - x\(^2\)(x+2)+x\(^3\)-x+3
6, x (3x-x+5)-(2x\(^3\)+3x-16)-x(x\(^2\)-x+2)
`@` `\text {Ans}`
`\downarrow`
`1,`
\((y-5)(y+8)-(y+4)(y-1)\)
`= y(y+8) - 5(y+8) - [y(y-1) + 4(y-1)]`
`= y^2+8y - 5y - 40 - (y^2-y + 4y - 4)`
`= y^2+8y-5y-40 - y^2+y-4y+4`
`= (y^2-y^2)+(8y-5y+y-4y) +(-40+4)`
`= -36`
Vậy, bt trên không phụ thuộc vào gtr của biến.
`2,`
\(y^4-(y^2+1)(y^2-1)\)
`= y^4 - [y^2(y^2-1)+y^2-1]`
`= y^4- (y^4-y^2 + y^2-1)`
`= y^4-(y^4-1)`
`= y^4-y^4+1`
`= 1`
Vậy, bt trên không phụ thuộc vào gtr của biến.
`3,`
\(x(y-z) + y(z-x) +z(x-y)\)
`= xy-xz + yz - yx + zx-zy`
`= (xy-yx) + (-xz+zx) + (yz-zy)`
`= 0`
Vậy, bt trên không phụ thuộc vào gtr của biến.
`4,`
\(x(y+z-yz) -y(z+x-xz)+z(y-x)\)
`= xy+xz-xyz - yz - yx + yxz + zy - zx`
`= (xy-yx)+(xz-zx)+(-xyz+yxz)+(-yz+zy)`
`= 0`
Vậy, bt trên không phụ thuộc vào gtr của biến.
`5,`
\(x(2x+1)-x^2(x+2)+x^3-x+3\)
`= 2x^2+x - x^3 - 2x^2 + x^3 - x + 3`
`= (2x^2-2x^2)+(-x^3+x^3)+(x-x)+3`
`= 3`
Vậy, bt trên không phụ thuộc vào gtr của biến.
`6,`
\(x(3x-x+5)-(2x^3+3x-16)-x(x^2-x+2)\)
`= 3x^2 - x^2 + 5x - 2x^3 - 3x + 16 - x^3 + x^2 - 2x`
`= -3x^3 + 3x^2 + 16`
Bạn xem lại đề bài.
`\text {#KaizuulvG}`
2)x^2-2xy+y^2-2x+2y
3)3x^2-2x-5
4)16-x^2+4xy-4x^2
5)x^2-2x+1-y^2
6)x^2+8x+15
Giúp mik vs cần gấp!!!!
\(2,=\left(x-y\right)^2-2\left(x-y\right)=\left(x-y\right)\left(x-y-2\right)\\ 3,=\left(3x-5\right)\left(x+1\right)\\ 4,sai.đề\\ 5,=\left(x-1\right)^2-y^2=\left(x-y-1\right)\left(x+y-1\right)\\ 6,=\left(x+3\right)\left(x+5\right)\)
Bài 4: Chứng minh biểu thức không phụ thuộc vào biến
a, (y-5)(y+8)-(y+4)(y-1)
2, y\(^4\)-(y\(^2\)+1)(y\(^2\)-1)
3, x(y-z)+y(z-x)+z(x-y)
4, x(y+z-yz)-y(z+x-xz)+z(y-x)
5, x(2x+1)-x\(^2\)(x+2)+x\(^3\)-x+3
6, x(3x-x+5)-(2x\(^3\)+3x-16)-x(x\(^2\)-x+2)
Bạn cần phần nào thì mình sẽ giúp đỡ . Chứ bạn nhắn nhiều bài mình không giải được á . Chứ còn dạng bài như này thì hầu hết bạn đều phải nhân bung ra rồi rút gọn đi á .
muốn rối cái não bạn nhắn một lượt mình đọc không hiểu bạn nhắn từng câu thôi
1.Tìm x,y thuộc N biết:
a,2x+153=y^2
b,3x+16=y^2
c,2x-2y=2016
d,(x-2)^2*(y-3)=-4
Tìm x,y
(x+3).(y+2)= 1
(x-1).(x+y)= 33
(2x-5).(y-6)= 17
3x+4y-xy= 16
Tìm x,y biết : x/3 = y/4 và:
1. 3y - 7x = 42
2. 2x + y =-16
3. 3x - y =-25