rút gọn
(3x+y) ( 9x^2 -3xy +y^2) -(3x-y)(9x^2+3xy+y^2 )
Rút gọn cái biểu thức sau r tính giá trị biểu thức F=-(2x-y) ^3-x(2x-y)^2-y^3 tại (x-2)^2 +y^2=0 G=(x+y) (x^2-xy+y^2) +3(2x-y) (4x^2+2xy+y^2) tại x+y=2;y=-3 H=(X+3y) (x^2-3xy+9y^2) +(3x-y) (9x^2+3xy+y^2) tại 3x-y=5;x=2
a: \(F=-\left(2x-y\right)^3-x\left(2x-y\right)^2-y^3\)
\(=-\left(2x-y\right)^2\cdot\left[2x-y+x\right]-y^3\)
\(=-\left(2x-y\right)^2\cdot\left(3x-y\right)-y^3\)
\(=\left(-4x^2+4xy-y^2\right)\left(3x-y\right)-y^3\)
\(=-12x^3+4x^2y+12x^2y-4xy^2-3xy^2+y^3-y^3\)
\(=-12x^3+16x^2y-7xy^2\)
\(\left(x-2\right)^2+y^2=0\)
mà \(\left(x-2\right)^2+y^2>=0\forall x,y\)
nên dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\y=0\end{matrix}\right.\)
=>x=2 và y=0
Thay x=2 và y=0 vào F, ta được:
\(F=-12\cdot2^3+16\cdot2^2\cdot0-7\cdot2\cdot0^2\)
\(=-12\cdot2^3\)
\(=-12\cdot8=-96\)
b: \(G=\left(x+y\right)\left(x^2-xy+y^2\right)+3\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=x^3+y^3+3\left(2x-y\right)\left[\left(2x\right)^2+2x\cdot y+y^2\right]\)
\(=x^3+y^3+3\left(8x^3-y^3\right)\)
\(=x^3+y^3+24x^3-3y^3\)
\(=25x^3-2y^3\)
Ta có: \(\left\{{}\begin{matrix}x+y=2\\y=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-3\\x=2-y=2-\left(-3\right)=2+3=5\end{matrix}\right.\)
Thay x=5 và y=-3 vào G, ta được:
\(G=25\cdot5^3-2\cdot\left(-3\right)^3\)
\(=25\cdot125-2\cdot\left(-27\right)\)
\(=3125+54=3179\)
c: \(H=\left(x+3y\right)\left(x^2-3xy+9y^2\right)+\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\(=\left(x+3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]+\left(3x-y\right)\left[\left(3x\right)^2+3x\cdot y+y^2\right]\)
\(=x^3+27y^3+27x^3-y^3\)
\(=28x^3-26y^3\)
Ta có: \(\left\{{}\begin{matrix}3x-y=5\\x=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2\\y=3x-5=3\cdot2-5=1\end{matrix}\right.\)
Thay x=2 và y=1 vào H, ta được:
\(H=28\cdot2^3-26\cdot1^3\)
\(=28\cdot8-26\)
=198
Rut gon cac bieu thuc sau:
2(x-y).(x+y)+(x-y)^2+(x+y)^2
(2x-3).(4x^2+6x+9) -(54+8x)
(3x+y).(9x^2-3xy+y^2)-(3x-y).(9x^2+3xy+y^2)
(a +b +c)^2-(a-c)^2-2ab+2bc
\(a,\)\(2\left(x-y\right)\left(x+y\right)+\left(x-y\right)^2+\left(x+y\right)^2.\)
\(=\left[\left(x-y\right)+\left(x+y\right)\right]^2=\left(x-y+x+y\right)^2=x^2\)
\(b,\)\(\left(2x-3\right)\left(4x^2+6x+9\right)-\left(54+8x\right)\)
\(=8x^2-27-54-8x=8x^2-8x-81\)
\(c,\)\(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\(=27x^3+y^3-\left(27x^3-y^3\right)=2y^3\)
\(d,\)\(\left(a+b+c\right)^2-\left(a-c\right)^2-2ab+2bc\)
\(=a^2+b^2+c^2+2ab+2bc+2ac-a^2+2ac-c^2-2ab+2bc\)
\(=b^2+4bc+4ac\)
Ai giải đúng chỗ mình mình sẽ đánh giá 5 sao và đúng mình cần gấp lắm a)(x+2)(x^2-24+4)(x^3+8) b)(2x-1/2)(4x^2+x+1/4) c)(x^2+y)(x^2-y)+y^2+x^4 d)(x+3)(x^2-3x+9)-x^3 e)(3x+y)(9x^2-3xy+y^2)-26x^3 g)(x+3y)(x^2-3xy+9y^2)+(3x-y)(9x^2+3xy+y^2)
a) \(\left(x+2\right)\left(x^2-24+4\right)\left(x^3+8\right)\)
\(=\left(x+2\right)\left(x^2-20\right)\left(x^3+8\right)\)
\(=\left(x^3-20x+2x^2-40\right)\left(x^3+8\right)\)
\(=x^6+8x^3-20x^4+160x+2x^5+16x^2-40x^3-120\)
\(=x^6+2x^5-20x^4-32x^3+16x^2+160x-120\)
b) \(\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
\(=8x^3+2x^2+\dfrac{1}{2}x-2x^2-\dfrac{1}{2}x-\dfrac{1}{8}\)
\(=8x^3-\dfrac{1}{8}\)
c) \(\left(x^2+y\right)\left(x^2-y\right)+y^2+x^4\)
\(=\left(x^2\right)^2-y^2+y^2+x^4\)
\(=x^4-y^2+y^2+x^4\)
\(=2x^4\)
d) \(\left(x+3\right)\left(x^2-3x+9\right)-x^3\)
\(=\left(x+3\right)\left(x^2-3\cdot x+3^2\right)-x^3\)
\(=x^3+3^3-x^3\)
\(=27\)
e) \(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-26x^3\)
\(=\left(3x+y\right)\left[\left(3x\right)^2-3x\cdot y+y^2\right]-26x^3\)
\(=\left(3x\right)^3+y^3-26x^3\)
\(=27x^3+y^3-26x^3\)
\(=x^3+y^3\)
g) \(\left(x+3y\right)\left(x^2-3xy+9y^2\right)+\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\(=\left(x+3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]+\left(3x-y\right)\left[\left(3x\right)^2+3x\cdot y+y^2\right]\)
\(=\left[x^3+\left(3y\right)^3\right]+\left[\left(3x\right)^3-y^3\right]\)
\(=x^3+27y^3+27x^3-y^3\)
\(=28x^3+26y^3\)
a) Sửa đề:
(x + 2)(x² - 2x + 4)(x³ + 8)
= (x³ + 8)(x³ + 8)
= (x³ + 8)²
b) (2x - 1/2)(4x² + x + 1/4)
= (2x)³ - (1/2)³
= 8x³ - 1/8
c) (x² + y)(x² - y) + y² + x⁴
= (x²)² - y² + y² + x⁴
= 2x⁴
d) (x + 3)(x² - 3x + 9) - x³
= x³ + 3³ - x³
= 27
e) (3x + y)(9x² - 3xy + y²) - 26x³
= (3x)³ + y³ - 26x³
= 27x³ + y³ - 26x³
= x³ + y³
g) (x + 3y)(x² - 3xy + 9y²) + (3x - y)(9x² + 3xy + y²)
= x³ + (3y)³ + (3x)³ - y³
= x³ + 27y³ + 27x³ - y³
= 28x³ + 26y³
Rút gọn biểu thức:
\(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-\left(3x-y\right)^3-27x^2y\)
Cái này đơn giản như đang giỡn thôi:
\(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-\left(3x-y\right)^3-27x^2y\)
\(=\left(3x\right)^3+y^3-\left[\left(3x\right)^3-3.\left(3x^2\right).+3.3x.y^2-y^3\right]-27x^2y\)
\(=27x^3+y^3-27x^3+27x^2y-9xy^2+y^3-27x^2y\)
\(=2y^3-9xy^2\)
Rút gọn biểu thức
\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\((2x+y) (4x^2-2xy+y^2)-(3x-y)(9x^2+3xy+y^2) =8x^3+y^3-9x^3+y^3=17x^3\)
\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\(=\left(2x+y\right)\left[\left(2x\right)^2-2xy+y^2\right]-\left(3x-y\right)\left[\left(3x\right)^2+3xy+y^2\right]\)
\(=\left(2x\right)^3+y^3-\left[\left(3x\right)^3-y^3\right]\)
\(=8x^3+y^3-27x^3+y^3\)
\(=-19x^3+2y^3\)
Rút gọn
(2x+y)(4x2-2xy+y2)+(3x-y)(9x2+3xy+y2)-35(x-1)(x2+x+1)
\(=\left(2x\right)^3+y^3+\left(3x\right)^3-y^3-35\left(x^3-1\right)\)
\(=8x^3+27x^3-35x^3+35\)
\(=35x^3-35x^3+35=35\)
Bài 2:Chứng minh rằng biểu thức: M=(1/3x-y)(x^2+3xy+9x^2)+9x^3-1/3x^3 có giá trị không phụ thuộc x, y
Tìm x€N,y€Z thỏa: (3xy+2x-y+5)(3x+4y-6)=5x(3x-2)+y(9x2+12xy-x+14)-40
Chia đa thức: (9x^2-2y^2+3xy-6x-y+1):(3x-1+2y)