Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ga*#lax&y
Xem chi tiết
LÊ TRẦN BÁCH
Xem chi tiết
Nguyễn Đức Trí
3 tháng 9 2023 lúc 16:16

\(A=2^1+2^2+2^3+...+2^{2016}\)

\(\Rightarrow A=2\left(1+2^1+2^2\right)+2^4\left(1+2^1+2^2\right)...+2^{2014}\left(1+2^1+2^2\right)\)

\(\Rightarrow A=2.7+2^4.7...+2^{2014}.7\)

\(\Rightarrow A=7\left(2+2^4...+2^{2014}\right)⋮7\)

\(\Rightarrow dpcm\)

Tạ Thị Bích Huệ
Xem chi tiết
Kiayomu Rika
Xem chi tiết
nguyênduytan
Xem chi tiết
Võ Ngọc Phương
4 tháng 10 2023 lúc 19:29

Đề bài yêu cầu gì vậy bạn? Rút gọn ạ?

chuche
4 tháng 10 2023 lúc 19:30

`@` Đặt `A=2^1+2^2+2^3+...+2^2017`

`=>2A=2(2^1+2^2+2^3+...+2^2017)`

`=>2A=2^2+2^3+...+2^2018`

`=>2A-A=(2^2+2^3+...+2^2018)-(2^1+2^2+...+2^2017)`

`=>A=2^2018-2`

nguyễn tiến hoàng
4 tháng 10 2023 lúc 19:55

cau nay de

trương đăng bảo
Xem chi tiết

Ta có A=20+21+22+23+...2100

2A=21+22+...+2101

2A-A=(21+22+...+2100)-(20+21+...+2100)

A=2101-1

Mà 2101-1=(........02)-1=........01 chia 100 dư 1

Chúc bạn học tốt.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 4 2018 lúc 12:16

Ta có

  2 1 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + 2 7 +...+ 2 98 + 2 99 + 2 100

= 2 1 + ( 2 2 + 2 3 + 2 4 ) + ( 2 5 + 2 6 + 2 7 ) +...+ ( 2 98 + 2 99 + 2 100 )

= 2 + 2 2 1 + 2 + 2 2 + 2 5 1 + 2 + 2 2 + . . . + 2 98 1 + 2 + 2 2

= 2 + 2 2 . 7 + 2 5 . 7 + . . . + 2 98 . 7 = 2 + 7 2 2 + 2 5 + . . . + 2 98

Mà  7 . 2 2 + 2 5 + . . . + 2 98 ⋮ 7  

Nên  2 + 7 2 2 + 2 5 + . . . + 2 98 : 7   d ư   2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 10 2019 lúc 8:44

Đề kiểm tra Toán 6 | Đề thi Toán 6

Mai Thiên Bảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 1 2023 lúc 10:27

A=(1+2+2^2)+2^3(1+2+2^2)+...+2^2013(1+2+2^2)+2^2016

=7(1+2^3+...+2^2013)+2^2016

Vì 2^2016 chia 7 dư 1

nên A chia 7 dư 1

Nguyễn Thị Thu Hà
Xem chi tiết
Nguyễn Tuấn Tú
16 tháng 10 2023 lúc 12:58

\(S=2+2.2^2+3.2^3+...+2016.2^{2016}\)

\(2S=2^2+2.2^3+3.2^4+...+2016.2^{2017}\)

\(2S-S=S=\text{​​}\text{​​}\text{​​}\text{​​}2^2+2.2^3+3.2^4+...+2016.2^{2017}-2-2.2^2-3.2^3-...-2016.2^{2016}\)

\(S=2\left(0-1\right)+2^2\left(1-2\right)+2^3\left(2-3\right)+...+2^{2016}\left(2015-2016\right)+2^{2017}.2016\)

\(S=-\left(2+2^2+2^3+...+2^{2016}\right)+2^{2017}.2016\)

\(\)Đặt \(A=2+2^2+2^3+...+2^{2016}\)

\(2A=2^2+2^3+2^4+...+2^{2017}\)

\(2A-A=A=2^2+2^3+2^4+...+2^{2017}-2-2^2-2^3-...-2^{2016}\)

\(A=2^{2017}-2\)

Thay vào S ta được:
\(S=-2^{2017}+2+2^{2017}.2016\)

\(S=2^{2017}.2015+2\)

Ta có \(S+2013=2^{2017}.2015+2+2013\)

\(S+2013=2^{2017}.2015+2015\)

\(S+2013=2015\left(2^{2017}+1\right)\)

Suy ra \(S+2013⋮2^{2017}+1\)

Vậy \(S+2013⋮2^{2017}+1\) (đpcm)

Huyên Trần
16 tháng 10 2023 lúc 12:53

cái này dễ lắm lun

 

Nguyễn Tuấn Tú
16 tháng 10 2023 lúc 13:02

\(S=2+2.2^2+3.2^3+...+2016.2^{2016}\)

\(S=2+2^3+3.2^3+...+2016.2^{2016}\)

\(S=2+2^3\left(1+3+...+2016.2^{2013}\right)\)

\(S=2+8.\left(1+3+...+2016.2^{2013}\right)\)

Suy ra \(S\) chia \(8\) dư \(2\)

Vậy \(S\) chia \(8\) dư \(2\)

Gửi bạn nha, bài này làm hơi dài ^^