Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hương Ly
Xem chi tiết
Thái Hoàng
12 tháng 7 2016 lúc 20:47
B= \(\frac{7}{4}\)

C= \(\frac{1}{2}\)

Lê Gia  Bảo
Xem chi tiết
lilla
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 7 2021 lúc 22:56

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

 

Nguyễn Lê Phước Thịnh
15 tháng 7 2021 lúc 22:57

c) Ta có: \(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\forall x\)

Dấu '=' xảy ra khi x(x+5)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

d) Ta có: \(x^2+5y^2-2xy+4y+3\)

\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+2\)

\(=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\forall x,y\)

Dấu '=' xảy ra khi \(x=y=-\dfrac{1}{2}\)

Cá Chép Nhỏ
Xem chi tiết
Incursion_03
13 tháng 12 2018 lúc 14:43

Hic , nãy đag làm dở ấn nhầm nút hủy ... h pk lm lại

\(A=3\left|2x-4\right|+5y^2+2019\)

Vì \(\hept{\begin{cases}3\left|2x-4\right|\ge0\\5y^2\ge0\end{cases}}\)

\(\Rightarrow A\ge0+0+2019=2019\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3\left|2x-4\right|=0\\5y^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-4=0\\y^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=0\end{cases}}}\)

Vậy với x = 2 và y = 0 thì Amin = 2019

Nguyễn Như Ngọc
Xem chi tiết
NVA GAMING
Xem chi tiết
Nguyễn Đức Trí
9 tháng 8 2023 lúc 8:35

\(E=2x^2+5y^2+x+4y+5\)

\(\Rightarrow E=2x^2+x+5y^2+4y+5\)

\(\Rightarrow E=2\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}-\dfrac{1}{16}\right)+5\left(y^2+\dfrac{4}{5}y+\dfrac{4}{25}-\dfrac{4}{25}\right)+5\)

\(\Rightarrow E=2\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\right)+5\left(y^2+\dfrac{4}{5}y+\dfrac{4}{25}\right)+5-\dfrac{1}{8}-\dfrac{4}{5}\)

\(\Rightarrow E=2\left(x+\dfrac{1}{4}\right)^2+5\left(y+\dfrac{2}{5}\right)^2+\dfrac{163}{40}\)

mà \(\left\{{}\begin{matrix}2\left(x+\dfrac{1}{4}\right)^2\ge0,\forall x\\5\left(y+\dfrac{2}{5}\right)^2\ge0,\forall y\end{matrix}\right.\)

\(\Rightarrow E=2\left(x+\dfrac{1}{4}\right)^2+5\left(y+\dfrac{2}{5}\right)^2+\dfrac{163}{40}\ge\dfrac{163}{40}\)

\(\Rightarrow GTNN\left(E\right)=\dfrac{163}{40}\left(tạix=-\dfrac{1}{4};y=-\dfrac{2}{5}\right)\)

Nguyễn Khắc Quang
Xem chi tiết
Xyz OLM
11 tháng 2 2021 lúc 8:46

M = 2x2 + 5y2 - 2xy + 1

=> 2M = 4x2 + 10y2 - 4xy + 2

           = (4x2 - 4xy + y2) + 9y2 + 2 

           = (4x - y)2 + (3y)2 + 2 

=> M = \(\frac{\left(4x-y\right)^2}{2}+\frac{\left(3y\right)^2}{2}+1\ge1\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}4x-y=0\\3y=0\end{cases}}\Leftrightarrow x=y=0\)

Vậy Min M = 1 <=> x = y = 0

Khách vãng lai đã xóa
Yen Tran
Xem chi tiết
Phương Các Trần
1 tháng 8 2015 lúc 17:22

A = 9x2 - 6xy + 5y2 + 1 = (3x)2 + 2.3y + y2 + (2y)2 + 1 = ( 3x + y)2 + ( 2y )2 +1 
mà ( 3x + y)> 0 và ( 2y )> 0 

=> ( 3x + y )2 + (2y)2 + 1 > 0

Vậy gtnn của A là 1 

Nguyễn Khánh Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 8 2021 lúc 15:06

Bài 1: 

Ta có: \(D=\sqrt{16x^4}-2x^2+1\)

\(=4x^2-2x^2+1\)

\(=2x^2+1\)

Nguyễn Thanh Tú
Xem chi tiết
Quỳnh Anh
1 tháng 6 2021 lúc 8:31

Trả lời:

A = ( 2x - 7 )4

Ta có: \(\left(2x-7\right)^4\ge0\forall x\)

Dấu "=" xảy ra khi 2x - 7 = 0 <=> 2x = 7 <=> x = 7/2

Vậy GTNN của A = 0 khi x = 7/2

B = ( x + 1 )10  + ( y - 2 )20 + 7 

Ta có:  \(\left(x+1\right)^{10}\ge0\forall x;\left(y-2\right)^{20}\ge0\forall y\)

\(\Leftrightarrow\left(x+1\right)^{10}+\left(y-2\right)^{20}\ge0\forall x;y\)

\(\Leftrightarrow\left(x+1\right)^{10}+\left(y-2\right)^{20}+7\ge7\forall x;y\)

Dấu "=" xảy ra khi x + 1 = 0 <=> x = -1  và y - 2 = 0 <=> y = 2

Vậy GTNN của B = 7 khi x = -1 và y = 2

C = ( 3x - 4 )100 + ( 5y + 1 )50 - 20

Ta có: \(\left(3x-4\right)^{100}\ge0\forall x;\left(5y+1\right)^{50}\ge0\forall y\)

\(\Leftrightarrow\left(3x-4\right)^{100}+\left(5y+1\right)^{50}\ge0\forall x;y\)

\(\Leftrightarrow\left(3x-4\right)^{100}+\left(5y+1\right)^{50}-20\ge-20\forall x;y\)

Dấu "=" xảy ra khi 3x - 4 = 0 <=> x = 4/3 và 5y + 1 = 0 <=> y = -1/5

Vậy GTNN của C = -20 khi x = 4/3 và y = -1/5

D = ( 2x + 3 )20 + ( 3y - 4 )10 + 1000

Ta có: \(\left(2x+3\right)^{20}\ge0\forall x;\left(3y-4\right)^{10}\ge0\forall y\)

\(\Leftrightarrow\left(2x+3\right)^{20}+\left(3y-4\right)^{10}\ge0\forall x;y\)

\(\Leftrightarrow\left(2x+3\right)^{20}+\left(3y-4\right)^{10}+100^0\ge1\forall x;y\)

Dấu "=" xảy ra khi 2x + 3 = 0 <=> x = -3/2 và 3y - 4 = 0 <=> y = 4/3

Vậy GTNN của D = 1 khi x = -3/2 và y = 4/3

E = ( x - y )50 + ( y - 2 )60 + 3

Ta có: \(\left(x-y\right)^{50}\ge0\forall x;y\)\(\left(y-2\right)^{60}\ge0\forall y\)

\(\Leftrightarrow\left(x-y\right)^{50}+\left(y-2\right)^{60}\ge0\forall x;y\)

\(\Leftrightarrow\left(x-y\right)^{50}+\left(y-2\right)^{60}+3\ge3\forall x;y\)

Dấu "=" xảy ra khi x - y = 0 <=> x = y và y - 2 = 0 <=> y = 2

Vậy GTNN của E = 3 khi x = y = 2

Khách vãng lai đã xóa