Cho điểm A( -1; 4) và B( 3; 2) .Viết phương trình tham số đường trung trực của đoạn thẳng AB.
Gọi M( 1; 3) là trung điểm của AB.
Ta có
Gọi d là đường thẳng trung trực của AB thì d qua M( 1;3) và nhận làm VTCP nên có phương trình tham số là:
Chọn A.
3/ Cho tam giác ABC , biết A(1;4) B(3;-1) C(6;2) A lập phương trình tham số của các đường thẳng AB BC CA B lập phương trình tham số của đường cao AH và trung tuyến AM
Đường cao AH là đường thẳng đi qua A(1; 4) và vuông góc với BC.
= (3; 3) =>
⊥
nên
nhận vectơ
= (3; 3) làm vectơ pháp tuyến và có phương trình tổng quát:
AH : 3(x – 1) + 3(y -4) = 0
3x + 3y – 15 = 0
=> x + y – 5 = 0
Gọi M là trung điểm BC ta có M (;
)
Trung tuyến AM là đường thẳng đi qua hai điểm A, M. Theo các viết phương trình đường thẳng đi qua hai điểm trong câu a) ta viết được:
AM : x + y – 5 = 0
Cho mặt phẳng Oxy cho tam giác ABC có A(-1; 2), B(-2; -4), C(1; 2)
1) Viết phương trình tổng quát đường thẳng AC, phương trình tham số đường trung tuyến CM.
2) Tìm tọa độ trọng tâm G, trực tâm H, tâm đường tròn ngoại tiếp I của tam giác ABC.
3) Tính chu vi, diện tích tam giác ABC.
4) Tính số đo góc tạo bởi 2 đường thẳng AB và AC.
5) Viết phương trình đường tròn ngoại tiếp tam giác ABC. Lập phương trình tiếp tuyến của đường tròn tại điểm A.
6) Lập phương trình đường tròn tâm C và tiếp xúc với đường thẳng AB.
Cho điểm A(-1;1);B(3;5). viết phương trình tham số của đường trung trực của đoạn thẳng AB
\(\overrightarrow{AB}=\left(4;4\right)=4\left(1;1\right)\)
Đường trung trực của AB vuông góc AB nên nhận \(\left(1;-1\right)\) là 1 vtcp
Gọi M là trung điểm AB \(\Rightarrow M\left(1;3\right)\)
Phương trình trung trực AB qua M có dạng: \(\left\{{}\begin{matrix}x=1+t\\y=3-t\end{matrix}\right.\)
Câu 1: Cho 2 điểm A(-2;3):B(4;-1).Viết phương trình đường trung trực của đoạn AB
Câu 2:Cho điểm A(1;-1);B(3;-5).viết phương trình tham số đương trung trực của đoạn thẳng AB
Câu 3: Cho tam giác ABC có phương trình câc cạnh AB:x+y-1=0 ;AC:7x-y+2=0 :BC:10x+y-19=0 , viết phương trình đường phân giác trong góc A của tam giác ABC
Câu 4:Cho tam giác ABC có A(-2;-1);B (-1;3);C(6;1). viết phương trình đường phân giác ngoài góc A của tam giác ABC
Câu 5:Viết phương trình đường thẳng (d) qua M(-1;2)và tạo với trục 0x một góc 60❞
a) Cho A(2; 4) ; B(4; 6) . Lập phương trình đường trung trực của AB
b) Cho (d) y = (2m + 3)x - 3n + 4. Tìm m,n để (d) là trung trực của AB biết A(-2; 3); B(4; 5)
a/ Giả sử phương trình AB là \(y=ax+b\)
\(A\left(2;4\right)\in AB\Rightarrow4=2a+b\text{ (1)}\)
\(B\left(4;6\right)\in AB\Rightarrow6=4a+b\text{ (2)}\)
Từ (1) và (2) suy ra \(a=1;\text{ }b=2\)
\(AB:y=x+2\)
Trung điểm của AB là \(M\left(\frac{2+4}{2};\text{ }\frac{4+6}{2}\right)\text{ hay }M\left(3;5\right)\)
Gọi phương trình trung trực AB là \(d:y=a_1x+b_1\)
d vuông góc với AB nên \(a'.a=-1\Rightarrow a'=-\frac{1}{a}=-\frac{1}{1}=-1\)
\(\Rightarrow d:y=-x+b_1\)
\(M\in d\Rightarrow5=-3+b_1\Rightarrow b_1=8\)
\(\text{Vậy }d:y=-x+8\)
b/
Làm tương tự câu a, sau đó đồng nhất hệ số \(2m+3=a_1;\text{ }-3n+4=b_1\)
Bài 2: Cho tam giác ABC, A( 2;-1), B( -3;2), C( 4;5).
a/ Lập phương trình tổng quát của đường thẳng AB,BC,AC.
b/ Lập phương trình đường cao BB',CC',AA'.
c/ Lập phương trình trung tuyến CM1,BM2,AM3.
d/ Lập phương trình trung trực d1,d2,d3 của các cạnh AB,BC,AC.
Mn giúp mik vs
Cho tam giác ABC, biết A(1; 3), B(-1;- 1), C(5 - 3). Lập phương trình tổng quát của:
a) Ba đường thẳng AB, BC, AC;
b) Đường trung trực cạnh AB;
c) Đường cao AH và đường trung tuyến AM của tam giác ABC.
a) Phương trình đường thẳng AB đi qua 2 điểm A và B là: \(\frac{{x - 1}}{{ - 1 - 1}} = \frac{{y - 3}}{{ - 1 - 3}} \Leftrightarrow \frac{{x - 1}}{{ - 2}} = \frac{{y - 3}}{{ - 4}} \Leftrightarrow 2x - y + 1 = 0\)
Phương trình đường thẳng AC đi qua 2 điểm A và C là: \(\frac{{x - 1}}{{5 - 1}} = \frac{{y - 3}}{{ - 3 - 3}} \Leftrightarrow \frac{{x - 1}}{4} = \frac{{y - 3}}{{ - 6}} \Leftrightarrow 3x + 2y - 9 = 0\)
Phương trình đường thẳng BC đi qua 2 điểm B và C là:
\(\frac{{x + 1}}{{5 + 1}} = \frac{{y + 1}}{{ - 3 + 1}} \Leftrightarrow \frac{{x + 1}}{6} = \frac{{y + 1}}{{ - 2}} \Leftrightarrow x + 3y + 4 = 0\)
b) Gọi d là đường trung trực của cạnh AB.
Lấy N là trung điểm của AB, suy ra \(N\left( {0;1} \right)\).
Do \(d \bot AB\) nên ta có vecto pháp tuyến của d là: \(\overrightarrow {{n_d}} = \left( {1;2} \right)\)
Vậy phương trình đường thẳng d đi qua N có vecto pháp tuyến \(\overrightarrow {{n_d}} = \left( {1;2} \right)\) là:
\(1\left( {x - 0} \right) + 2\left( {y - 1} \right) = 0 \Leftrightarrow x + 2y - 2 = 0\)
c) Do AH vuông góc với BC nên vecto pháp tuyến của AH là \(\overrightarrow {{n_{AH}}} = \left( {3; - 1} \right)\)
Vậy phương trình đường cao AH đi qua điểm A có vecto pháp tuyến \(\overrightarrow {{n_{AH}}} = \left( {3; - 1} \right)\)là: \(3\left( {x - 1} \right) - 1\left( {y - 3} \right) = 0 \Leftrightarrow 3x - y = 0\)
Do M là trung điểm BC nên \(M\left( {2; - 2} \right)\). Vậy ta có: \(\overrightarrow {AM} = \left( {1; - 5} \right) \Rightarrow \overrightarrow {{n_{AM}}} = \left( {5;1} \right)\)
Phương trình đường trung tuyến AM đi qua điểm A có vecto pháp tuyến \(\overrightarrow {{n_{AM}}} = \left( {5;1} \right)\) là:
\(5\left( {x - 1} \right) + 1\left( {y - 3} \right) = 0 \Leftrightarrow 5x + y - 8 = 0\)
Bài 1: Cho ∆ABC có \(A\left(1;-2\right),B\left(0;4\right),C\left(6;3\right)\). Viết phương trình tham số của:
a) Đường thẳng D qua A và có một VTCP là \(\left(1;-2\right)\)
b) Đường trung trực của AB
c) Đường thẳng AB
d) Đường trung bình ứng với cạnh BC
a.Phương trình d: \(\left\{{}\begin{matrix}x=1+t\\y=-2-2t\end{matrix}\right.\)
b. Gọi H là trung điểm AB \(\Rightarrow H\left(\dfrac{1}{2};1\right)\)
\(\overrightarrow{BA}=\left(1;-6\right)\Rightarrow\) trung trực AB nhận \(\left(6;1\right)\) là 1 vtcp
Phương trình: \(\left\{{}\begin{matrix}x=\dfrac{1}{2}+6t\\y=1+t\end{matrix}\right.\)
c. \(\overrightarrow{BA}=\left(1;-6\right)\) nên AB nhận (1;-6) là 1 vtcp
Phương trình AB: \(\left\{{}\begin{matrix}x=1+t\\y=-2-6t\end{matrix}\right.\)
d. Gọi M là trung điểm AC \(\Rightarrow M\left(\dfrac{7}{2};\dfrac{1}{2}\right)\) \(\Rightarrow\overrightarrow{MH}=\left(3;-\dfrac{1}{2}\right)=\dfrac{1}{2}\left(6;-1\right)\)
Phương trình MH: \(\left\{{}\begin{matrix}x=\dfrac{7}{2}+6t\\y=\dfrac{1}{2}-t\end{matrix}\right.\)