Với \(a,b>0.CMR:\frac{a}{\sqrt{b}}-\sqrt{a}\ge\sqrt{b}-\frac{b}{\sqrt{a}}\)
CMR: với a, b, c > 0 thì:
\(\sqrt{\frac{a}{bc}}+\sqrt{\frac{b}{ca}}+\sqrt{\frac{c}{ab}}\ge\sqrt{\frac{1}{a}}+\sqrt{\frac{1}{b}}+\sqrt{\frac{1}{c}}\)
Áp dụng bđt Cauchy, ta có:
\(\sqrt{\frac{a}{bc}}\)+\(\sqrt{\frac{b}{ca}}\)≥ \(2\sqrt{\sqrt{\frac{ab}{abc^2}}}\)= \(2\sqrt{\sqrt{\frac{1}{c^2}}}\)= \(2\sqrt{\frac{1}{c}}\) (vì c>0)
Tương tự: \(\sqrt{\frac{b}{ca}}\)+\(\sqrt{\frac{c}{ab}}\)≥ \(2\sqrt{\frac{1}{a}}\)
\(\sqrt{\frac{c}{ab}}\)+\(\sqrt{\frac{a}{bc}}\)≥ \(2\sqrt{\frac{1}{b}}\)
Cộng vế theo vế của các bđt với nhau, ta có: \(2\)\(\left(\sqrt{\frac{a}{bc}}+\sqrt{\frac{b}{ca}}+\sqrt{\frac{c}{ab}}\right)\text{≥}\)\(2\left(\sqrt{\frac{1}{a}}+\sqrt{\frac{1}{b}}+\sqrt{\frac{1}{c}}\right)\)
<=> \(\sqrt{\frac{a}{bc}}+\sqrt{\frac{b}{ca}}+\sqrt{\frac{c}{ab}}\text{≥}\)\(\sqrt{\frac{1}{a}}+\sqrt{\frac{1}{b}}+\sqrt{\frac{1}{c}}\)(đpcm)
Dấu "=" xảy ra <=> a = b = c
Cho a, b ≥ 0. CMR: \(\sqrt{\frac{a+b}{2}}\ge\frac{\sqrt{a}+\sqrt{b}}{2}\)
theo BĐT cô - si ta có :
\(\frac{a+b}{2}\ge\sqrt{ab}\) \(\left(a\ge0,b\ge0\right)\)
\(\Leftrightarrow\)\(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\)\(a+b+a+b\ge2\sqrt{ab}+a+b\)
\(\Leftrightarrow\)\(2a+2b\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\Leftrightarrow\)\(2\left(a+b\right)\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\Leftrightarrow\)\(\frac{1}{4}\cdot2\cdot\left(a+b\right)\ge\frac{1}{4}\cdot\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\Leftrightarrow\)\(\sqrt{\frac{a+b}{2}}\ge\sqrt{\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}}\)
\(\Leftrightarrow\)\(\sqrt{\frac{a+b}{2}}\ge\frac{\sqrt{a}+\sqrt{b}}{2}\) \(\left(đpcm\right)\)
BĐT \(\Leftrightarrow\frac{a+b}{2}\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}\Leftrightarrow\frac{a-2\sqrt{ab}+b}{4}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{4}\ge0\)(đúng)
Đẳng thức xảy ra khi a = b
P/s: em ko chắc..
Cho a > 0, b > 0. CMR: \(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a}{\sqrt{b}}+\sqrt{b}\ge2.\sqrt{\frac{a}{\sqrt{b}}.\sqrt{b}}=2\sqrt{a}\)
Tương tự:\(\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\sqrt{\frac{b}{\sqrt{a}}.\sqrt{a}}=2\sqrt{b}\)
Cộng theo vế BĐT ta được:\(\frac{a}{\sqrt{b}}+\sqrt{b}+\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\left(\sqrt{a}+\sqrt{b}\right)\)
\(\Rightarrow\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)
Cho a,b,c >0 và abc= 1.CMR:
\(\frac{b+c}{\sqrt{a}}+\frac{c+a}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)
Giúp với , cần gấp
Áp dụng BĐT Cô - si cho 2 số không âm, ta có:
\(VT=\text{Σ}_{cyc}\frac{b+c}{\sqrt{a}}\ge2\left(\text{Σ}_{cyc}\sqrt{\frac{bc}{a}}\right)\)
\(\Leftrightarrow\text{Σ}_{cyc}\frac{b+c}{\sqrt{a}}\ge\left(\sqrt{\frac{ca}{b}}+\sqrt{\frac{ab}{c}}\right)+\left(\sqrt{\frac{ab}{c}}+\sqrt{\frac{bc}{a}}\right)\)
\(+\left(\sqrt{\frac{bc}{a}}+\sqrt{\frac{ca}{b}}\right)\)
\(\Leftrightarrow\text{Σ}_{cyc}\frac{b+c}{\sqrt{a}}\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge\sqrt{a}+\sqrt{b}+\sqrt{c}\)
\(+3\sqrt[6]{abc}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)
(Dấu "="\(\Leftrightarrow a=b=c=1\))
\(\frac{b+c}{\sqrt{a}}+\frac{c+a}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\ge\frac{2\sqrt{bc}}{\sqrt{a}}+\frac{2\sqrt{ca}}{\sqrt{b}}+\frac{2\sqrt{ab}}{\sqrt{c}}=2\left(\sqrt{\frac{bc}{a}}+\sqrt{\frac{ca}{b}}+\sqrt{\frac{ab}{c}}\right)\)
\(=\left(\sqrt{\frac{bc}{a}}+\sqrt{\frac{ca}{b}}\right)+\left(\sqrt{\frac{ca}{b}}+\sqrt{\frac{ab}{c}}\right)+\left(\sqrt{\frac{ab}{c}}+\sqrt{\frac{bc}{a}}\right)\)
\(\ge2\sqrt{\sqrt{\frac{bc}{a}}\sqrt{\frac{ca}{b}}}+2\sqrt{\sqrt{\frac{ca}{b}}\sqrt{\frac{ab}{c}}}+2\sqrt{\sqrt{\frac{ab}{c}}\sqrt{\frac{bc}{a}}}\)
\(=2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)=\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
\(\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\sqrt[3]{\sqrt{a}\sqrt{b}\sqrt{c}}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)
(4)Bài 1:Với \(\forall\) a>b>0. CMR: a+ \(\frac{1}{b\left(a-b\right)}\ge3\)
(7) Bài 2: Cho a,b,c \(\ne\) 0 .CMR: \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)
(8) Bài 3: Cho a,b,c>0 thõa mãn abc=1
CMR: \(\frac{b+c}{\sqrt{a}}+\frac{c+a}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)
Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)
Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)
Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)
Bài 2: Thêm đk a,b,c >0.
Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.
Bài 3: Nó sao sao ấy ta?
chứng minh các đẳng thức sau
a)\(\frac{a+b}{b^2}\sqrt{\frac{a^2b^4}{a^2+2ab+b^2}}=\)/a/ với a+b>0 và b≠0
b)\(\frac{\sqrt{a}++\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\frac{2b}{b-a}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)với a≥0,b≥0 và a≠b
a/
\(=\frac{a+b}{b^2}.\frac{\left|a\right|.b^2}{\left|a+b\right|}=\frac{\left(a+b\right).b^2.\left|a\right|}{b^2\left(a+b\right)}=\left|a\right|\)
b/
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}-\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{4\sqrt{ab}+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{2\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
Cho a,b,c>0 và abc=1
cmr: \(\frac{b+c}{\sqrt{a}}+\frac{a+c}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3
\)
bđt cần c/m tương đương với:
\(\left(\frac{b+c}{\sqrt{a}}+\sqrt{a}\right)+\left(\frac{a+c}{\sqrt{b}}+\sqrt{b}\right)+\left(\frac{a+b}{\sqrt{c}}+\sqrt{c}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\\ \ \)\(\left(a+b+c\right)\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\)
Mặt khác:
\(a+b+c\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{3}\)
\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\frac{9}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
=> \(VT\ge3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
Ta cần c/m:
\(3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\)
<=> \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge3\sqrt[3]{\sqrt{abc}}=3\)(BĐt Cô-si)
xong rồi bạn nhé
Cho a>0, b>0. CMR:
\(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)
Vì a>0; b>0 nên theo bđt Cauchy ta có :
\(\frac{a}{\sqrt{b}}+\sqrt{b}\ge2\sqrt{\frac{a}{\sqrt{b}}.\sqrt{b}}=2\sqrt{a}\)
\(\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\sqrt{\frac{b}{\sqrt{a}}.\sqrt{a}}=2\sqrt{a}\)
\(\Rightarrow\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}+\sqrt{a}+\sqrt{b}\ge2\sqrt{a}+2\sqrt{b}\)
\(\Rightarrow\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)(đpcm)
cách khác nhé
Đặt \(\sqrt{a}\rightarrow x;\sqrt{b}\rightarrow y\) khi đó bài toán trở thành \(x,y>0\)
Chứng minh : \(\frac{x^2}{y}+\frac{y^2}{x}\ge x+y\)
Áp dụng Bất đẳng thức Svacxo ta có :
\(\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\)
Đẳng thức xảy ra khi và chỉ khi \(x=y\Leftrightarrow a=b\)
Vậy ta có điều phải chứng minh
C/Minh đẳng thức:
a) \(\left(\frac{\sqrt{a}+2}{a+2\sqrt{a}+1}-\frac{\sqrt{a}-2}{a-1}\right).\frac{\sqrt{a}+1}{\sqrt{a}}=\frac{2}{a-1}\) (với a>0, b>0, a≠b)
b)\(\frac{2}{\sqrt{ab}}:\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}=-1\) (với a>0, b>0,a≠b)
c) \(\frac{2\sqrt{a}+3\sqrt{b}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{b}-6}-\frac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6}=\frac{a+9}{a-9}\) (với a≥0, b≥0,a≠9)