Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Phúc
Xem chi tiết
Hoàng Lê Bảo Ngọc
15 tháng 10 2016 lúc 20:41

Chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) rồi áp dụng với n = 1,2,....,2014

Văn Đức Kiên
15 tháng 10 2016 lúc 20:40

ki+e

n ejmfjnhcy

Dương Thanh Ngân
Xem chi tiết
bt ko
Xem chi tiết
Lê Thị Thục Hiền
1 tháng 9 2019 lúc 20:25

Đặt \(\sqrt{x-2013}=a\left(a>0\right)\)

\(\sqrt{y-2014}=b\left(b>0\right)\)

\(\sqrt{z-2015}=c\left(c>0\right)\)

\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)

<=> \(\frac{a-1}{a^2}-\frac{1}{4}+\frac{b-1}{b^2}-\frac{1}{4}+\frac{c-1}{c^2}-\frac{1}{4}=0\)

<=> \(\frac{4a-4-a^2}{4.a^2}+\frac{4b-4-b^2}{4b^2}+\frac{4c-4+c^2}{4c^2}=0\)

<=>\(\frac{-\left(a^2-4a+4\right)}{4a^2}-\frac{b^2-4b+4}{4b^2}-\frac{c^2-4c+4}{4c^2}=0\)

<=> \(\frac{\left(a-2\right)^2}{4a^2}+\frac{\left(b-2\right)^2}{4b^2}+\frac{\left(c-2\right)^2}{4c^2}=0\).

\(\frac{\left(a-2\right)^2}{4a^2}\ge0\forall a>0\)

\(\frac{\left(b-2\right)^2}{4b^2}\ge0\forall b>0\)

\(\frac{\left(c-2\right)^2}{4c^2}\ge0\forall c>0\)

=> \(\frac{\left(a-2\right)^2}{4a^2}+\frac{\left(b-2\right)^2}{4b^2}+\frac{\left(c-2\right)^2}{4c^2}\ge0\) với moi a,b,c >0

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}a-2=0\\b-2=0\\c-2=0\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}\sqrt{x-2013}=2\\\sqrt{y-2014}=2\\\sqrt{z-2015}=2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x-2013=4\\y-2014=4\\z-2015=4\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x=2017\\y=2018\\z=2019\end{matrix}\right.\)(t/m)

Vậy \(\left(x,y,z\right)\in\left\{\left(2017,2018,2019\right)\right\}\)

Thanh Bình đẹp Gái
1 tháng 9 2019 lúc 20:05

ko bt

ngan huynh
Xem chi tiết
Đường Quỳnh Giang
1 tháng 9 2018 lúc 21:50

\(\frac{1}{\sqrt{2013}-\sqrt{2014}}-\frac{1}{\sqrt{2014}-\sqrt{2015}}\)

\(=\frac{\sqrt{2013}+\sqrt{2014}}{\left(\sqrt{2013}-\sqrt{2014}\right)\left(\sqrt{2014}-\sqrt{2015}\right)}-\frac{\sqrt{2014}+\sqrt{2015}}{\left(\sqrt{2014}-\sqrt{2015}\right)\left(\sqrt{2014}+\sqrt{2015}\right)}\)

\(=\frac{\sqrt{2013}+\sqrt{2014}}{2013-2014}-\frac{\sqrt{2014}+\sqrt{2015}}{2014-2015}\)

\(=-\sqrt{2013}-\sqrt{2014}+\sqrt{2014}+\sqrt{2015}\)

\(=\sqrt{2015}-\sqrt{2013}\)

Huỳnh Diệu Bảo
1 tháng 9 2018 lúc 21:55

\(=\frac{\sqrt{2013}+\sqrt{2014}}{2013-2014}-\frac{\sqrt{2014}+\sqrt{2015}}{2014-2015}\)

\(=-\sqrt{2013}-\sqrt{2014}+\sqrt{2014}+\sqrt{2015}\)

\(=\sqrt{2015}-\sqrt{2013}\)

Nguyễn Tuấn
Xem chi tiết
vtzking tony
Xem chi tiết
mokona
17 tháng 1 2016 lúc 10:24

Em mới lớp 6 thui! Sorry vì ko giúp đc

vtzking tony
17 tháng 1 2016 lúc 10:34

ai biet jup tui voi

 

Huỳnh Phát Đạt
17 tháng 1 2016 lúc 10:55

lục sách tìm !có đấy ! tuy em có mới học lớp 5 nhưng thấy qua bai này rùi !!!!!

Bùi Hoài Thương
Xem chi tiết
Ngọc Lan Tiên Tử
26 tháng 6 2019 lúc 11:10

\(\left(\sqrt{2014}-\sqrt{2013}\right).\left(\sqrt{2014}+\sqrt{2013}\right)\)

=> \(\sqrt{2014^2}-\sqrt{2013^2}\)

=> \(2014-2013\)

\(=1\)

Vậy ..............

Thanh Trà
26 tháng 6 2019 lúc 11:14

\(\left(\sqrt{2014}-\sqrt{2013}\right).\left(\sqrt{2014}+\sqrt{2013}\right)=1\)

\(VT=\left(\sqrt{2014}-\sqrt{2013}\right).\left(\sqrt{2014}+\sqrt{2013}\right)\)

\(=\sqrt{2014^2}-\sqrt{2013^2}\)

\(=2014-2013\)

\(=1=VP\left(dpcm\right)\)

Vậy....

Huỳnh Ngọc Nhiên
Xem chi tiết
Đào Đức Mạnh
31 tháng 7 2015 lúc 20:53

\(\frac{1}{\sqrt{2}-\sqrt{3}}-\frac{1}{\sqrt{3}-\sqrt{4}}+...-\frac{1}{\sqrt{2013}-\sqrt{2014}}+\frac{1}{\sqrt{2014}-\sqrt{2015}}\)

\(=\frac{\sqrt{2}+\sqrt{3}}{2-3}-\frac{\sqrt{3}+\sqrt{4}}{3-4}+...+\frac{\sqrt{2014}+\sqrt{2015}}{2014-2015}\)

\(=-\left(\sqrt{2}+\sqrt{3}\right)+\sqrt{3}+\sqrt{4}-\left(\sqrt{4}+\sqrt{5}\right)+...+\sqrt{2014}+\sqrt{2015}\)

=\(-\sqrt{2}+\sqrt{2015}\)

Nguyễn Hoài Nam
Xem chi tiết
Dark Killer
28 tháng 7 2016 lúc 9:06

* Cách 1: 

\(\sqrt{1^2+2013^2+\frac{2013^2}{2014^2}}\)

\(=\sqrt{2013^2.\left(1+\frac{1}{2013^2}+\frac{1}{2014^2}\right)}\)

\(=2013.\left(1+\frac{1}{2013}-\frac{1}{2014}\right)\)

\(=2013+1-\frac{2013}{2014}\)

\(=2014-\frac{2013}{2014}\)

* Cách 2:

\(\sqrt{1^2+2013^2+\frac{2013^2}{2014^2}}\)

\(=\sqrt{\left(1+2013\right)^2-2.2013+\frac{2013^2}{2014^2}}\)

\(=\sqrt{2014^2-2.2013+\left(\frac{2013}{2014}\right)^2}\)

\(=\sqrt{\left(2014-\frac{2013}{2014}\right)^2}\)

\(=2014-\frac{2013}{2014}\)

Từ 2 cách trên ta suy ra:

\(\sqrt{1^2+2013^2+\frac{2013^2}{2014^2}}+\frac{2013}{2014}\)

\(=2014-\frac{2013}{2014}+\frac{2013}{2014}\)

\(=2014\)

Theo đề bài trên, ta có thể suy ra công thức tổng quát như sau:

\(\sqrt{1^2+x^2+\frac{x^2}{\left(x+1\right)^2}}+\frac{x}{x+1}\)

(Chúc bạn học tốt và nhớ k cho mình với nhá!)

Ngọc Tuấn Lê
25 tháng 7 2016 lúc 18:47

cái này trong sách vũ hữu bình đó bạn