Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Hoàng Đạt
Xem chi tiết
Mysterious Person
26 tháng 10 2018 lúc 21:41

mk chỉ cho cách lm :

a) thế điềm \(O\left(0;0\right)\) vào d \(\Leftrightarrow x=0;y=0\) --> m

b) thế điểm \(\left(3;5\right)\) vào d \(\Leftrightarrow x=3;y=5\) --> m

c) thế \(x=0;y=0\) rồi biến đổi đẳng thức d

rồi tìm điều kiện để đẳng thức đó không đúng

d) ta có đường thẳng \(d\backslash\backslash Ox\) có dạng \(y=a\)\(d\backslash\backslash Oy\) có dạng \(x=b\)

--> \(d\backslash\backslash Ox\) \(\Leftrightarrow\) \(2m-1=0\) và --> \(d\backslash\backslash Oy\) \(\Leftrightarrow\) \(m-2=0\)

--> ...

nhamthuhuyen
Xem chi tiết
Lizy
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2023 lúc 5:28

loading...

Lizy
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 12 2023 lúc 20:56

Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\\left(m+1\right)x-2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\x\left(m+1\right)=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{2}{m+1}\end{matrix}\right.\)

=>\(A\left(\dfrac{2}{m+1};0\right)\)

\(OA=\sqrt{\left(\dfrac{2}{m+1}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{2}{m+1}\right)^2}=\dfrac{2}{\left|m+1\right|}\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=\left(m+1\right)\cdot x-2=0\cdot x-2=-2\end{matrix}\right.\)

=>B(0;-2)

\(OB=\sqrt{\left(0-0\right)^2+\left(-2-0\right)^2}=\sqrt{0^2+\left(-2\right)^2}=2\)

Ox\(\perp\)Oy

=>OA\(\perp\)OB

=>ΔOAB vuông tại O

Để góc OAB=45 độ thì ΔOAB vuông cân tại O

=>OA=OB

=>\(\dfrac{2}{\left|m+1\right|}=2\)

=>\(\left|m+1\right|=1\)

=>\(\left[{}\begin{matrix}m+1=1\\m+1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)

Lizy
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2023 lúc 21:27

Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\\left(m-1\right)x+4=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\x\left(m-1\right)=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{m-1}\\y=0\end{matrix}\right.\)

=>\(A\left(-\dfrac{4}{m-1};0\right)\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=\left(m-1\right)\cdot x+4=0\cdot\left(m-1\right)+4=4\end{matrix}\right.\)

=>B(0;4)

O(0;0); B(0;4); \(A\left(-\dfrac{4}{m-1};0\right)\)

\(OA=\sqrt{\left(-\dfrac{4}{m-1}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{4}{m-1}\right)^2}=\dfrac{4}{\left|m-1\right|}\)

\(OB=\sqrt{\left(0-0\right)^2+\left(4-0\right)^2}=\sqrt{0+16}=4\)

Vì Ox\(\perp\)Oy

nên OA\(\perp\)OB

=>ΔOAB vuông tại O

=>\(S_{AOB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot4\cdot\dfrac{4}{\left|m-1\right|}=\dfrac{8}{\left|m-1\right|}\)

Để \(S_{OAB}=2\) thì \(\dfrac{8}{\left|m-1\right|}=2\)

=>|m-1|=8/2=4

=>\(\left[{}\begin{matrix}m-1=4\\m-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-3\end{matrix}\right.\)

Vũ Thùy Trâm
Xem chi tiết
Vũ Thùy Trâm
Xem chi tiết
Nguyễn Ngọc Lộc
25 tháng 7 2020 lúc 12:53

a, - Thay x = -2 và y = -1 vào hàm số trên ta được :

\(-1=-2a+5\)

=> \(a=3\)

b, - Thay a = 3 vào hàm số ta được :\(y=3x+5\)

- TXĐ : R ( \(y=3x+5\) )

+, Cho x = 0 => y = 5 => Điểm ( 0;5 )

+, Cho y = 0 => \(x=-\frac{5}{3}\) => Điểm ( \(-\frac{5}{3};0\) )

( Hình thì bạn tự tìm tọa độ của x , y trên trục tọa độ rồi vẽ nha )

c, Ta có : \(S_{AOB}=\frac{1}{2}.OA.OB=\frac{1}{2}.\left|5\right|.\left|-\frac{5}{3}\right|=\frac{25}{6}\) ( đvdt )

Vậy ...

Lizy
Xem chi tiết

1: Thay x=0 và y=4 vào (d), ta được:

\(0\left(m^2+1\right)+m+2=4\)

=>m+2=4

=>m=2

2: tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\x\left(m^2+1\right)+m+2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{-m-2}{m^2+1}\\y=0\end{matrix}\right.\)

Tọa độ B là: \(\left\{{}\begin{matrix}x=0\\y=0\left(m^2+1\right)+m+2=m+2\end{matrix}\right.\)

vậy: O(0;0); \(A\left(\dfrac{-m-2}{m^2+1};0\right);B\left(0;m+2\right)\)

\(OA=\sqrt{\left(\dfrac{-m-2}{m^2+1}-0\right)^2+\left(0-0\right)^2}=\sqrt{\dfrac{\left(m+2\right)}{m^2+1}}^2=\dfrac{\left|m+2\right|}{m^2+1}\)

\(OB=\sqrt{\left(0-0\right)^2+\left(m+2-0\right)^2}=\sqrt{0^2+\left(m+2\right)^2}=\left|m+2\right|\)

Vì Ox\(\perp\)Oy nên ΔOAB vuông tại O

=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot\dfrac{\left(m+2\right)^2}{m^2+1}\)

Để \(S_{OBA}=\dfrac{1}{2}\) thì \(\dfrac{1}{2}\cdot\dfrac{\left(m+2\right)^2}{m^2+1}=\dfrac{1}{2}\)

=>\(\dfrac{\left(m+2\right)^2}{m^2+1}=1\)

=>\(\left(m+2\right)^2=m^2+1\)

=>\(m^2+4m+4=m^2+1\)

=>4m+4=1

=>4m=-3

=>\(m=-\dfrac{3}{4}\)

Le Xuan Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 12 2023 lúc 22:46

a: Để (d) cắt (d') tại một điểm nằm trên trục tung thì

\(\left\{{}\begin{matrix}-2m+1< >2\\-m+1=m+3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2m< >1\\-m-m=3-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< >-\dfrac{1}{2}\\-2m=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=-1\\m< >-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-1\)

b: (d): \(y=-\left(2m-1\right)x-m+1\)

\(=-2mx+x-m+1\)

\(=m\left(-2x-1\right)+x+1\)

Tọa độ điểm cố định mà (d) luôn đi qua là:

\(\left\{{}\begin{matrix}-2x-1=0\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2x=1\\y=x+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{2}+1=\dfrac{1}{2}\end{matrix}\right.\)

c: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\-\left(2m-1\right)x-m+1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\\left(-2m+1\right)x=m-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{m-1}{-2m+1}\end{matrix}\right.\)

=>\(A\left(\dfrac{m-1}{-2m+1};0\right)\)

\(OA=\sqrt{\left(\dfrac{m-1}{-2m+1}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{m-1}{2m-1}\right)^2}=\dfrac{\left|m-1\right|}{\left|2m-1\right|}\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=-\left(2m-1\right)\cdot x-m+1=-\left(2m-1\right)\cdot0-m+1=-m+1\end{matrix}\right.\)

vậy: B(0;-m+1)

\(OB=\sqrt{\left(0-0\right)^2+\left(-m+1-0\right)^2}=\sqrt{\left(-m+1\right)^2}\)

\(=\left|m-1\right|\)

Vì ΔOAB vuông tại O nên \(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB\)

\(=\dfrac{1}{2}\cdot\left|m-1\right|\cdot\dfrac{\left|m-1\right|}{\left|2m-1\right|}\)

\(=\dfrac{\dfrac{1}{2}\left(m-1\right)^2}{\left|2m-1\right|}\)

Để \(S_{AOB}=1\) thì \(\dfrac{1}{2}\cdot\dfrac{\left(m-1\right)^2}{\left|2m-1\right|}=1\)

=>\(\dfrac{\left(m-1\right)^2}{\left|2m-1\right|}=2\)

=>\(\left(m-1\right)^2=2\left|2m-1\right|\)(1)

TH1: m>1/2

Phương trình (1) sẽ tương đương với \(\left(m-1\right)^2=2\left(2m-1\right)\)

=>\(m^2-2m+1=4m-2\)

=>\(m^2-6m+3=0\)

=>\(\left[{}\begin{matrix}m=3+\sqrt{6}\left(nhận\right)\\m=3-\sqrt{6}\left(nhận\right)\end{matrix}\right.\)

TH2: m<1/2

Phương trình (2) sẽ tương đương với:

\(\left(m-1\right)^2=2\left(-2m+1\right)\)

=>\(m^2-2m+1=-4m+2\)

=>\(m^2-2m+1+4m-2=0\)

=>\(m^2+2m-1=0\)

=>\(\left[{}\begin{matrix}m=-1+\sqrt{2}\left(nhận\right)\\m=-1-\sqrt{2}\left(nhận\right)\end{matrix}\right.\)