Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lizy

Trong mặt phẳng tọa độ Oxy, (d):y=`(m^2 +1)`x+m+2

1. Tìm m để (d) cắt trục tung ở điểm có tung độ là 4

2. (d) cắt các trục Ox và Oy lần lượt ở A và B. Tìm m để diện tích \(OAB=\dfrac{1}{2}\)

1: Thay x=0 và y=4 vào (d), ta được:

\(0\left(m^2+1\right)+m+2=4\)

=>m+2=4

=>m=2

2: tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\x\left(m^2+1\right)+m+2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{-m-2}{m^2+1}\\y=0\end{matrix}\right.\)

Tọa độ B là: \(\left\{{}\begin{matrix}x=0\\y=0\left(m^2+1\right)+m+2=m+2\end{matrix}\right.\)

vậy: O(0;0); \(A\left(\dfrac{-m-2}{m^2+1};0\right);B\left(0;m+2\right)\)

\(OA=\sqrt{\left(\dfrac{-m-2}{m^2+1}-0\right)^2+\left(0-0\right)^2}=\sqrt{\dfrac{\left(m+2\right)}{m^2+1}}^2=\dfrac{\left|m+2\right|}{m^2+1}\)

\(OB=\sqrt{\left(0-0\right)^2+\left(m+2-0\right)^2}=\sqrt{0^2+\left(m+2\right)^2}=\left|m+2\right|\)

Vì Ox\(\perp\)Oy nên ΔOAB vuông tại O

=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot\dfrac{\left(m+2\right)^2}{m^2+1}\)

Để \(S_{OBA}=\dfrac{1}{2}\) thì \(\dfrac{1}{2}\cdot\dfrac{\left(m+2\right)^2}{m^2+1}=\dfrac{1}{2}\)

=>\(\dfrac{\left(m+2\right)^2}{m^2+1}=1\)

=>\(\left(m+2\right)^2=m^2+1\)

=>\(m^2+4m+4=m^2+1\)

=>4m+4=1

=>4m=-3

=>\(m=-\dfrac{3}{4}\)


Các câu hỏi tương tự
Lizy
Xem chi tiết
tranthuylinh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
hoàng hà diệp
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Thuyền nhỏ Drarry
Xem chi tiết
Thuyền nhỏ Drarry
Xem chi tiết
Vân Trương Thị Thu
Xem chi tiết
oki pạn
Xem chi tiết