Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Mai Hương
Xem chi tiết
♥✪BCS★Tuyết❀ ♥
10 tháng 2 2019 lúc 15:27

Đồ thị của hàm số Bài viết này không được chú giải bất kỳ nguồn tham khảo nào. ... Nếu đầu vào x  một cặp có thứ tự các số thực (x1, x2) thì đồ thị của hàm số f  tập hợp tất cả các bộ ba có thứ tự (x1, x2, f(x1, x2)), và đối với một hàm liên tục thì đó  một mặt.

❤✫ Key ✫ ღ  Đóm ღ❤
10 tháng 2 2019 lúc 15:27

Đồ thị của hàm số Bài viết này không được chú giải bất kỳ nguồn tham khảo nào. ... Nếu đầu vào x  một cặp có thứ tự các số thực (x1, x2) thì đồ thị của hàm số f  tập hợp tất cả các bộ ba có thứ tự (x1, x2, f(x1, x2)), và đối với một hàm liên tục thì đó  một mặt.

nguyen thi tuong vy
28 tháng 12 2020 lúc 20:56

kết bạn đi nha 

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 10 2018 lúc 6:51

Đáp án D

Do đó  6 x - 1 4 x x  là đạo hàm cấp 1 của f(x).

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 4 2018 lúc 6:31

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 2 2017 lúc 4:10

Chọn D

nguyen truong giang
Xem chi tiết
Bùi Thiên Hà Thủy
Xem chi tiết
Lê Thị Bích Tuyền
7 tháng 11 2014 lúc 7:34
Trong toán học, khái niệm hàm số (hay hàm) được hiểu tương tự như khái niệm ánh xạ. Nếu như ánh xạ được định nghĩa là một qui tắc tuơng ứng áp dụng lên hai tập hợp bất kỳ (còn được gọi là tập nguồn và tập đích), mà trong đó mỗi phần tử của tập hợp này (tập hợp nguồn) tương ứng với một và chỉ một phần tử thuộc tập hợp kia (tập hợp đích), thì ta hoàn toàn có thể coi hàm số là một trường hợp đặc biệt của ánh xạ, khi tập nguồn và tập đích đều là tập hợp số.

Ví dụ một hàm số f xác định trên tập hợp số thực R được miêu tả bằng biểu thức:y = x2 - 5 sẽ cho tương ứng mỗi số thực x với một số thực y duy nhất nhận giá trị là x2 - 5, như vậy 3 sẽ tương ứng với 4. Khi hàm f đã được xác định, ta có thể viết f(3) = 4.

Đôi khi chữ hàm được dùng như cách gọi tắt thay cho hàm số. Tuy nhiên trong các trường hợp sử dụng khác, hàm mang ý nghĩa tổng quát của ánh xạ, như trong lý thuyết hàm. Các hàm hay ánh xạ tổng quát có thể là liên hệ giữa các tập hợp không phải là tập số. Ví dụ có thể định nghĩa một hàm là qui tắc cho tương ứng mỗi hãng xe với tên quốc gia xuất xứ của nó, chẳng hạn có thể viết Xuất_xứ(Honda) = N
khong minh thai
8 tháng 11 2014 lúc 20:34

nếu đại lượng Y phụ thuộc vào đại lượng thay đổi X sao cho mỗi giá trị của X ta chỉ nhận được một giá trị tương ứng của Y thì Y là biến số và X là hàm số

Ahwi
Xem chi tiết
Despacito
3 tháng 11 2017 lúc 21:13

Trong toán học, khái niệm hàm số (hay hàm) được hiểu tương tự như khái niệm ánh xạ. Thực chất hàm số chỉ là trường hợp đặc biệt của ánh xạ. Nếu như ánh xạ được định nghĩa là một quy tắc tương ứng áp dụng lên hai tập hợp bất kỳ (còn được gọi là tập nguồn và tập đích), mà trong đó mỗi phần tử của tập hợp này (tập hợp nguồn) tương ứng với một và chỉ một phần tử thuộc tập hợp kia (tập hợp đích), thì ta hoàn toàn có thể coi hàm số là một trường hợp đặc biệt của ánh xạ, khi tập nguồn và tập đích đều là tập hợp số.

nguyenvankhoi196a
3 tháng 11 2017 lúc 21:10

Trong toán học, khái niệm hàm số (hay hàm) được hiểu tương tự như khái niệm ánh xạ. Thực chất hàm số chỉ là trường hợp đặc biệt của ánh xạ. Nếu như ánh xạ được định nghĩa là một quy tắc tương ứng áp dụng lên hai tập hợp bất kỳ (còn được gọi là tập nguồn và tập đích), mà trong đó mỗi phần tử của tập hợp này (tập hợp nguồn) tương ứng với một và chỉ một phần tử thuộc tập hợp kia (tập hợp đích), thì ta hoàn toàn có thể coi hàm số là một trường hợp đặc biệt của ánh xạ, khi tập nguồn và tập đích đều là tập hợp số.

Ví dụ một hàm số f xác định trên tập hợp số thực R bằng biểu thức: y = x2 - 5 sẽ cho tương ứng mỗi số thực x với một số thực y duy nhất nhận giá trị là x2 - 5, như vậy 3 sẽ tương ứng với 4. Khi hàm f được xác định, ta có thể viết f(3) = 4.

Đôi khi chữ hàm được dùng như cách gọi tắt thay cho hàm số. Tuy nhiên trong các trường hợp sử dụng khác, hàm mang ý nghĩa tổng quát là ánh xạ, như trong lý thuyết hàm. Các hàm hay ánh xạ tổng quát có thể là liên hệ giữa các tập hợp không phải là tập số. Ví dụ có thể định nghĩa một hàm là quy tắc cho tương ứng mỗi hãng xe với tên quốc gia xuất xứ của nó, chẳng hạn có thể viết Xuất_xứ(Honda) = Nhật.

Kí hiệu hàm số bắt nguồn từ tiếng Anh của từ function, có nghĩa là phụ thuộc, chẳng hạn nghĩa là đại lượng y phụ thuộc vào x một lượng là căn bậc 2 của x, khi đó ta kí hiệu {\displaystyle f(x)={\sqrt {x}}}{\displaystyle f(x)={\sqrt {x}}}.

Đỗ Đức Đạt
3 tháng 11 2017 lúc 21:12

Trong toán học, khái niệm hàm số (hay hàm) được hiểu tương tự như khái niệm ánh xạ. Thực chất hàm số chỉ là trường hợp đặc biệt của ánh xạ. Nếu như ánh xạ được định nghĩa là một quy tắc tương ứng áp dụng lên hai tập hợp bất kỳ (còn được gọi là tập nguồn và tập đích), mà trong đó mỗi phần tử của tập hợp này (tập hợp nguồn) tương ứng với một và chỉ một phần tử thuộc tập hợp kia (tập hợp đích), thì ta hoàn toàn có thể coi hàm số là một trường hợp đặc biệt của ánh xạ, khi tập nguồn và tập đích đều là tập hợp số.

Ví dụ một hàm số f xác định trên tập hợp số thực R bằng biểu thức: y = x2 - 5 sẽ cho tương ứng mỗi số thực x với một số thực y duy nhất nhận giá trị là x2 - 5, như vậy 3 sẽ tương ứng với 4. Khi hàm f được xác định, ta có thể viết f(3) = 4.

Đôi khi chữ hàm được dùng như cách gọi tắt thay cho hàm số. Tuy nhiên trong các trường hợp sử dụng khác, hàm mang ý nghĩa tổng quát là ánh xạ, như trong lý thuyết hàm. Các hàm hay ánh xạ tổng quát có thể là liên hệ giữa các tập hợp không phải là tập số. Ví dụ có thể định nghĩa một hàm là quy tắc cho tương ứng mỗi hãng xe với tên quốc gia xuất xứ của nó, chẳng hạn có thể viết Xuất_xứ(Honda) = Nhật.

Kí hiệu hàm số bắt nguồn từ tiếng Anh của từ function, có nghĩa là phụ thuộc, chẳng hạn nghĩa là đại lượng y phụ thuộc vào x một lượng là căn bậc 2 của x, khi đó ta kí hiệu {\displaystyle f(x)={\sqrt {x}}}{\displaystyle f(x)={\sqrt {x}}}

charlotte cute
Xem chi tiết
tô phước thông
Xem chi tiết
Kậu...chủ...nhỏ...!!!
27 tháng 11 2021 lúc 20:10

là số ko thay đổi

Nguyễn Ngọc Khánh Huyền
27 tháng 11 2021 lúc 20:11

Tham khảo Trong toán học, một hàm số hay hàm là một quan hệ hai ngôi giữa hai tập hợp liên kết mọi phần tử của tập hợp đầu tiên với đúng một phần tử của tập hợp thứ hai. Ví dụ điển hình là các hàm từ số nguyên sang số nguyên hoặc từ số thực sang số thực.

Bùi Nguyễn Đại Yến
27 tháng 11 2021 lúc 20:11

Tham khảo/:

Trong toán học, một hàm số hay hàm là một quan hệ hai ngôi giữa hai tập hợp liên kết mọi phần tử của tập hợp đầu tiên với đúng một phần tử của tập hợp thứ hai. Ví dụ điển hình là các hàm từ số nguyên sang số nguyên hoặc từ số thực sang số thực.