cho hình chóp S.EFGH có SE vuông góc (EFGH) đáy EFGH là hình vuông. Chứng minh
a) SE vuông GF
b) GH vuông (SHE)
c) HE vuông (SEF)
d) xác định góc giữa SE và HE
e) xác định góc giữa SG và EF
Cho hình chóp S.ABC có đáy ABC là tam giác đều tâm O, cạnh là 3a. SA vuông (ABC).Gọi E là trung điểm BC, góc giữa SC và mặt phẳng (ABC) bằng 60
a) Xác định góc giữa SC và (ABC). Tính SA.
b) Chứng minh SE vuông BC. Tính diện tích tam giác SBC.
c) Tính thể tích khối chóp S.ABC.Tính khoảng cách từ A đến mặt phẳng (SBC)
d) Gọi K là điểm trên cạnh SE sao cho KS= 2KE. Tính thể tích khối chóp KOBC.
e) Tính d(AE,SB).
Cho hình chóp S.ABCD có cạnh SA vuông góc với đáy . Đáy là hình vuông tâm O a) Xác định góc giữa đường thăng SB và mặt đáy b) Xác định góc giữa đường thẳng SO và mặt (ABCD) c) Xác định góc giữa đường thẳng SC và mặt (SAD) d) Xác định góc giữa đường SB và mặt (SAC)
a: (SB;(ABCD))=(BS;BA)=góc SBA
b: (SO;(ABCD))=(OS;OA)=góc SOA
c: (SC;(SAD))=(SC;SD)
Cho hình chóp S.ABCD có SA vuông góc với đáy. Đáy ABCD là hình thang vuông ở A, B sao cho AB = BC = AD/2 = a. SA = 2a. a. Xác định góc giữa (SAB) và (SCD). b, Xác định góc giữa (SBD) và (SAB). c. Xác định góc giữa (SBC) và (SCD).
a: Qua S kẻ đường Sx song song SD
=>Sx vuông góc SA
SC vuông góc CD
=>SC vuông góc Sx
((SAB);(SCD))=góc ASC
b: (SBD) căt (SAB)=SB
Kẻ DA vuông góc AB
mà DA vuông góc SA
nên DA vuông góc (SAB)
=>DA vuông góc SB
Kẻ AK vuông góc SB
=>((SBD);(SAB))=góc AKD
c: (SBC) giao (SCD)=SC
Kẻ BH vuông góc SC
Qua H kẻ HF//CD
=>HF vuông góc SC
=>((SBC);(SCD))=góc BHF
Cho hình chóp S.ABCD có SA vuông góc với đáy và SA=a/2 . Đáy ABCD là hình vuông cạnh 2a. a, Xác định góc giữa (SBD) và (ABCD). b, Xác định góc giữa (SCD) và (SAC).
a: (SBD) giao (ABCD)=BD
AB vuông góc BD
SB vuông góc BD
=>góc cần tìm là góc SBA
Hình chóp S.ABCD có đáy là hình thang vuông ABCD vuông tại A và D, có AB = 2a, AD = DC = a, có cạnh SA vuông góc với mặt phẳng (ABCD) và SA = a.
a) Chứng minh mặt phẳng (SAD) vuông góc với mặt phẳng (SDC), mặt phẳng (SAC) vuông góc với mặt phẳng (SCB).
b) Gọi φ là góc giữa hai mặt phẳng (SBC) và (ABCD), tính tanφ.
c) Gọi (α) là mặt phẳng chứa SD và vuông góc với mặt phẳng (SAC). Hãy xác định (α) và xác định thiết diện của hình chóp S.ABCD với (α)
a) Ta có:
⇒ (SCD) ⊥ (SAD)
Gọi I là trung điểm của đoạn AB. Ta có AICD là hình vuông và IBCD là hình bình hành. Vì DI // CB và DI ⊥ CA nên AC ⊥ CB. Do đó CB ⊥ (SAC).
Vậy (SBC) ⊥ (SAC).
b) Ta có:
c)
Vậy (α) là mặt phẳng chứa SD và vuông góc với mặt phẳng (SAC) chính là mặt phẳng (SDI). Do đó thiết diện của (α) với hình chóp S.ABCD là tam giác đều SDI có chiều dài mỗi cạnh bằng a√2. Gọi H là tâm hình vuông AICD ta có SH ⊥ DI và .
Tam giác SDI có diện tích:
Cho hình chóp SABCD có đáy ABCD là hình chữ nhật AB=a , AD=a3 , SA vuông góc (ABCD) , SA=3a
1. Chứng minh BD vuông góc (SAC)
2. Xác định góc giữa SD và (ABCD)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA=a, SA vuông góc với đáy. Xác định góc giữa các mặt phẳng : (AHK) và (ABCD)
Cho hình chóp SABCD đáy là hình vuông cạnh a , SA vuông góc đáy , góc giữa SB và đáy là 60°
a . cm các mặt bên của hình chóp là tam giác vuông . tính diện tích xung quanh của hình chóp
b. gọi H , K là hình chiếu của A lên SB , SD , cm AH vuông (SBC) , AK vuông (SCD)
c. cm HK vuông (SAC)
d. xác định và tính góc giữa SC và (ABCD) , SB và (SAC)
e. xđ và tính góc giữa 2 mặt ( SBD) và (ABCD)