Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
títtt
Xem chi tiết
meme
21 tháng 8 2023 lúc 19:34
Để xác định miền xác định của hàm số y = √(sin8x + 5), ta cần tìm giá trị của x mà làm cho biểu thức bên trong dấu căn không âm.

sin8x + 5 ≥ 0 sin8x ≥ -5

Vì giá trị của sin(x) nằm trong khoảng [-1, 1], nên ta có: -1 ≤ sin8x ≤ 1 -1 - 5 ≤ sin8x + 5 ≤ 1 + 5 -6 ≤ sin8x + 5 ≤ 6

Vậy, miền xác định của hàm số là D = R (tất cả các số thực).

Đáp án: A. D = R.

Để tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = √(sin3x), ta cần xem xét giá trị của hàm số trong miền xác định.

Vì giá trị của hàm số sin(x) nằm trong khoảng [-1, 1], nên giá trị của hàm số sin3x nằm trong khoảng [-1, 1]. Vì căn bậc hai của một số không âm không thể nhỏ hơn 0, nên giá trị của hàm số y = √(sin3x) nằm trong khoảng [0, 1].

Vậy, giá trị lớn nhất của hàm số là M = 1 và giá trị nhỏ nhất là m = 0.

Đáp án: D. M = 1; m = 0.

Hoàng Lê Bảo Ngọc
Xem chi tiết
alibaba nguyễn
28 tháng 11 2016 lúc 16:31

Ta có

\(\frac{x^3}{\left(y+z\right)\left(y+2z\right)}+\frac{y+z}{12}+\frac{y+2z}{18}\ge\frac{3x}{6}=\frac{x}{2}\)

\(\Leftrightarrow\frac{x^3}{\left(y+z\right)\left(y+2z\right)}\ge-\frac{y+z}{12}-\frac{y+2z}{18}+\frac{x}{2}=\frac{18x-7z-5y}{36}\)

Tương tự ta có

\(\frac{y^3}{\left(z+x\right)\left(z+2x\right)}\ge\frac{18y-7x-5z}{36}\)

\(\frac{z^3}{\left(x+y\right)\left(x+2y\right)}\ge\frac{18z-7y-5x}{36}\)

Cộng vế theo vế ta được

\(A\ge\frac{18x-7z-5y}{36}+\frac{18y-7x-5z}{36}+\frac{18z-7y-5x}{36}\)

\(=\frac{x+y+z}{6}\ge\frac{3\sqrt[3]{xyz}}{6}=\frac{3.2}{6}=1\)

Dấu = xảy ra khi x = y = z = 2

Nguyễn Công Khôi
28 tháng 11 2016 lúc 21:11

=720vix+y3=56vayx=720

Hoàng Lê Bảo Ngọc
29 tháng 11 2016 lúc 12:10

alibaba nguyễn Đúng rồi! Muốn k cho bạn lắm nhưng không hiểu sao cái nút "ĐÚNG" nó đơ mất rồi :(

Cù Khắc Huy
Xem chi tiết
Minh Khôi
Xem chi tiết
Hoàng Thu Hà
Xem chi tiết
Le vi dai
20 tháng 3 2016 lúc 22:48

đề sai rồi kìa

Nấm Nấm
Xem chi tiết
KAl(SO4)2·12H2O
7 tháng 8 2019 lúc 8:27

\(M=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}\right)-2}{\left(x+\frac{1}{x}\right)+x^3+\frac{1}{x^3}}\)

\(M=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}\right)-2}{\frac{2x^6+3x^4+3x^2+2}{x^3}}\)

\(M=\frac{\left[\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}\right)-2\right]x^3}{2x^6+3x^4+3x^2+2}\)

\(M=\frac{x^3\left(6x^4+15x^2+\frac{15}{x^2}+\frac{6}{x^4}+18\right)}{2x^6+3x^4+3x^2+2}\)

\(M=\frac{\frac{6x^8+15x^6+18x^4+15x^2+6}{x^4}.x^3}{2x^6+3x^4+3x^2+2}\)

\(M=\frac{\frac{6x^8+15x^6+18x^4+15x^2+6}{x}}{2x^6+3x^4+3x^2+2}\)

\(M=\frac{6x^8+15x^6+18x^4+15x^2+6}{x\left(2x^6+3x^4+3x^2+2\right)}\)

\(M=\frac{3\left(x^2+1\right)^2\left(2x^4+x^2+2\right)}{x\left(x^2+1\right)\left(2x^4+x^2+2\right)}\)

\(M=\frac{3\left(x^3+1\right)}{x}\)

Trần Hữu Ngọc Minh
Xem chi tiết
Lê Thành An
Xem chi tiết
tth_new
4 tháng 1 2020 lúc 8:48

Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow ab+bc+ca=3\). Tìm Min:\(P=\Sigma_{cyc}\frac{a^3}{\left(b+2c\right)}\)

Auto làm nốt:3

Khách vãng lai đã xóa
Trần Điền
Xem chi tiết