Tính biết SABCD là h/c đều có tất cả các cạnh = a
Tính thể tích SABCD biết SABCD là h/c đều có tất cả các cạnh = a
Tính \(x_{ΔSABC}\) biết SABC là h/c đều có tất cả các cạnh = a
Tính thể tích SABC biết SABC là h/c đều có tất cả các cạnh = a
Tính biết SA ⊥ đáy, ABCD là hình thang vuông có 2 đáy AD=a, BC=2a và AB=a, SA=2a
\(V=\dfrac{1}{3}SA.S_{ABCD}=\dfrac{1}{3}SA.\dfrac{1}{2}\left(AD+BC\right).AB=a^3\)
Cho hình chóp SABCD có đáy hình thoi ABCD cạnh a, góc BAD=60° và SA=SB=SC=a√3/2. Tính Vsabcd và khoảng cách C lên (SBD)
cho hình chóp đều SABCD. Gọi M,N lần lượt là trung điểm của SB,SD. Mặt phẳng (AMN) cắt SC tại E. Tính V SAMEN/VSABCD
Gọi O là tâm đáy và I là trung điểm MN
\(\Rightarrow\) I cũng là trung điểm SO (định lý Talet)
Trong tam giác SAC, nối AI cắt SC tại E
Áp dụng định lý Menelaus:
\(\dfrac{SE}{EC}.\dfrac{CA}{AO}.\dfrac{OI}{SI}=1\Leftrightarrow\dfrac{SE}{EC}.2.1=1\Rightarrow SE=\dfrac{1}{2}EC\)
\(\Rightarrow SE=\dfrac{1}{3}SC\)
Do chóp đều \(\Rightarrow\left\{{}\begin{matrix}V_{SAMEN}=2V_{SANE}\\V_{SABCD}=2V_{SACD}\end{matrix}\right.\)
\(\Rightarrow\dfrac{V_{SAMEN}}{V_{SABCD}}=\dfrac{V_{SANE}}{V_{SACD}}=\dfrac{SA}{SA}.\dfrac{SN}{SD}.\dfrac{SE}{SC}=1.\dfrac{1}{2}.\dfrac{1}{3}=\dfrac{1}{6}\) (định lý Simsons)
Cho tứ diện đều ABCD có tất cả các cạnh bằng a. Gọi G là trọng tâm tam giác BCD. Gọi S là điểm sao cho A S ¯ = B G ¯ . Thể tích của khối đa diện SABCD là
A. a 3 2 12
B. a 3 2 24
C. 5 a 3 2 36
D. 3 a 3 2 24
Cho tứ diện đều ABCD có tất cả các cạnh bằng a. Gọi G là trọng tâm tam giác BCD. Gọi S là điểm đối xứng của G mặt phẳng (ABC). Thể tích khối đa diện SABCD là:
A. a 3 2
B. a 3 2 3
C. a 3 2 6
D. a 3 2 9