Cho x là số thực và x > 3 Tìm GTNN của A = x + (x² - 9)/(x - 3)
Cho x y là số thực thỏa mãn x - y - xy=3 Tìm GTNN của A= x2 +y2
cho x,y là 2 số thực thỏa x + y=1 . tìm GTNN của A = x3+ y3 + xy + 1
Bài làm:
Ta có: \(A=x^3+y^3+xy+1=\left(x+y\right)\left(x^2-xy+y^2\right)+xy+1\)
\(=x^2-xy+y^2+xy+1=x^2+y^2+1\)
\(\ge\frac{\left(x+y\right)^2}{2}+1=\frac{1^2}{2}+1=\frac{3}{2}\)(BĐT Cauchy)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
Bạn xem lại đề bài, theo mình đề là: Tìm GTNN của A=x3+y3+xy
Từ dòng 2 xuống dòng 3 của Bạn Đăng không phải là bất đẳng thức Cauchy đâu nhé em!
\(\left(x-y\right)^2\ge0,\forall x;y\)
<=> \(x^2+y^2-2xy\ge0;\forall xy\)
<=> \(2x^2+2y^2\ge x^2+y^2+2xy;\forall xy\)
<=> \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2;\forall x,y\)
<=> \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2};\forall x;y\)
1. tìm GTNN của (x-1)^4+(x+3)^4
2. cho x,y,z là các số thực thỏa mãn: x+y+z=x^3+y^3+z^3=1
tình gt của A=x^2015+y^2015+z^2015
cho x,y,z là các số thực dương .Tìm GTNN của
P=(x^4/(y+z)-x^3/2)+(y^4/(x+z)-y^3/2)+(z^4/(x+y)-x^3/2)+25/9
Ai giúp mk vs mk đang cần gấp!!! HELP ME!!!
Cho x,y,z là các số thực không âm thỏa mãn x+y+z=3 . Tìm GTNN và GTLN của biểu thức N = căn(x+y) + căn(y+z) + căn(x+z)
cho x và y là hai số thực thỏa mãn x+y=1
tìm GTNN của P=x^3+y^3+xy.
\(x+y=1\Rightarrow y=1-x\)
\(P=x^3+\left(1-x\right)^3+x\left(1-x\right)\)
\(P=2x^2-2x+1=\dfrac{1}{2}\left(2x-1\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)
\(P_{min}=\dfrac{1}{2}\) khi \(x=y=\dfrac{1}{2}\)
Cho x,y là các sỗ thực sao cho x2 + y2 = 1. Tìm GTNN của A=(x - 3)(y - 3)
cho x và y là số thực dương thỏa mãn : x + y <= 3
tìm GTNN của P = (2/3xy)+ (6/y+4)
Theo giả thiết \(x+y\le3\to xy+\left(y+4\right)\le y\left(3-y\right)+y+4=-\left(y-2\right)^2+8\le8.\)
Do đó theo bất đẳng thức Cauchy-Schwartz \(\frac{1}{xy}+\frac{9}{y+4}\ge\frac{\left(1+3\right)^2}{xy+y+4}\ge\frac{16}{8}=2.\)
Nhân cả hai vế với \(\frac{2}{3}\) ta suy ra \(\frac{2}{3xy}+\frac{6}{y+4}\ge\frac{4}{3}.\) Dấu bằng xảy ra khi \(y=2,x=1.\) Vậy giá trị bé nhất của \(P\) là \(\frac{4}{3}\).