cho các sỗ thực x,y thỏa mãn x+y =2 tìm gtnn của biểu thức Q=\(x^3+y^3+x^2+y^2\)
cho x y z là các số thực dương thỏa mãn x + y + z = 3.Tìm GTLN của A= xy/căn(z2+3) + yz/căn(x2+3) + zx/căn(y2+3)
cho x;y là các số thực thỏa mãn (x+√x2+3)(y+√y2+3)=3Tính P=x+y
Cho (x+y-1)2 = xy tìm GTNN của P=1/xy + 1/x2+y2 + √xy/x+y
Tìm các số thực dương x,y,z thoả mãn:
x. căn của (1-y2) + y. căn của (2-z2) + z. căn của (3-x2) = 3
Trong mặt phẳng với hệ tọa độ Oxy Cho parabol p : y = 1/2x bình và đường thẳng d :y =( 2 m + 1) x - 2m bình - 2 m + 4( m là tham số thực )
a/ vẽ đồ thị hàm số P và d trên cùng một tọa độ khi m = 0
b/ tìm các giá trị của m để d cắt P tại 2 điểm phân biệt M (x1;y2) , N (x2;y2) sao cho biểu thức T = 2( y 1 + y2) - 3( x1 + x2 )- x1x2 đạt giá trị nhỏ nhất
Cho x, y là các số thực dương thay đổi sao cho x+y=2
Tìm GTNN của \(T=\frac{x^2+3y^2}{2xy^2-x^2y^3}\)
Cho 3 số thực dương x, y, z thỏa mãn: 1 x 2 + 1 y 2 + 1 z 2 = 1 . Tìm giá trị nhỏ nhất của biểu thức: P = y 2 z 2 x ( y 2 + z 2 ) + z 2 x 2 y ( z 2 + x 2 ) + x 2 y 2 z ( x 2 + y 2 )