Lời giải:
$A=(x+y)(x^2-xy+y^2)+x^2+y^2=2(x^2-xy+y^2)+x^2+y^2=2(x^2+y^2)+(x-y)^2$
$\geq 2(x^2+y^2)=(1^2+1^2)(x^2+y^2)\geq (x+y)^2=2^2=4$ (theo BĐT Bunhiacopxky)
Vậy $A_{\min}=4$. Giá trị này đạt tại $x=y=1$
Lời giải:
$A=(x+y)(x^2-xy+y^2)+x^2+y^2=2(x^2-xy+y^2)+x^2+y^2=2(x^2+y^2)+(x-y)^2$
$\geq 2(x^2+y^2)=(1^2+1^2)(x^2+y^2)\geq (x+y)^2=2^2=4$ (theo BĐT Bunhiacopxky)
Vậy $A_{\min}=4$. Giá trị này đạt tại $x=y=1$
Cho các số thực x và y thoả mãn điều kiện x^2+y^2=2. tìm giá trị nhỏ nhất của biểu thức P=3(x+y)+xy
cho các số thực x và y thoả mãn điều kiện x^2+y^2=2. tìm giá trị nhỏ nhất của biểu thức P= 3(x+y)+xy
Tìm giá trị nhỏ nhất của biểu thức T = x 3 + y 3 − x 2 + y 2 x − 1 y − 1 với x, y là các số thực lớn hơn 1
cho 3 số thực dương x,y,z thoả mãn x^2>= y^2 +z^2 tìm giá trị nhỏ nhất của biểu thức: A= 1/x^2 .(y^2 +2^2 )+x^2.(1/y^2 + 1/2^2 ) +2024
Cho 3 số thực dương x, y, z thỏa mãn: 1 x 2 + 1 y 2 + 1 z 2 = 1 . Tìm giá trị nhỏ nhất của biểu thức: P = y 2 z 2 x ( y 2 + z 2 ) + z 2 x 2 y ( z 2 + x 2 ) + x 2 y 2 z ( x 2 + y 2 )
Cho a, y, z là các số thực dương thoả mãn \(\dfrac{1}{x}+\dfrac{2}{y}\le1;x+\dfrac{2}{z}\le3\) . Tìm giá trị nhỏ nhất của biểu thức \(P=y^2+2z^2\)
Giúp e vs plzz sắp thi vào 10 chuyên rồi
Cho x,y là các số thực thay đổi thỏa mãn điều kiện x2 +y2+xy=3.Tìm giá trị lớn nhất và nhỏ nhất của biểu thức x2+y2-xy
Cho các số thực x,y không âm thỏa mãn điều kiện .Hãy tìm giá trị lớn nhất của biểu thức .
Cho các số thực dương x,y thoả mãn: (x+y-1)^2= xy . Tìm giá trị nhỏ nhất của biểu thức P=1/xy + 1/x^2+y^2 + căn(xy)/x+y