Cho a, y, z là các số thực dương thoả mãn \(\dfrac{1}{x}+\dfrac{2}{y}\le1;x+\dfrac{2}{z}\le3\) . Tìm giá trị nhỏ nhất của biểu thức \(P=y^2+2z^2\)
cho các số dương x, y, z thoả mãn x+y+z nhỏ hơn hoặc bằng 3 tìm giá trị lớn nhất của biểu thức:
\(A=\sqrt{1+X^2}+\sqrt{1+Y^2}+\sqrt{1+Z^2}+2\left(\sqrt{X}+\sqrt{Y}+\sqrt{Z}\right)\)
cho x,y,z là 3 số thực dương thoã mãn x+y+z=3. Tìm giá trị nhỏ nhất chủa biểu thức
\(Q=\frac{x+1}{1+y^2}+\frac{y+1}{1+z^2}+\frac{z+1}{1+x^2}\)
cho x, y, z là 3 số thực dương thỏa mãn x+y+z=2
tìm giá trị nhỏ nhất của biểu thức: \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Cho x,y,z là ba số thực dương thỏa mãn: \(x+y+z=3\). Tìm giá trị nhỏ nhất của biểu thức:
\(Q=\frac{x+1}{1+y^2}+\frac{y+1}{1+z^2}+\frac{z+1}{1+x^2}\)
Cho x, y, z là các số thực dương thỏa mãn: xyz = 1. Tìm giá trị nhỏ nhất của
biểu thức A =\(\dfrac{1}{x+y+z}-\dfrac{2}{xy+yz+zx}\)
Cho các số thực dương x,y thoả mãn: (x+y-1)^2= xy . Tìm giá trị nhỏ nhất của biểu thức P=1/xy + 1/x^2+y^2 + căn(xy)/x+y
cho 3 số thực dương x;y;z thỏa mãn x+y+z<=3/2. tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}\)
cho x,y,z là những số thực dương thỏa mãn điều kiện x+y+z =3 . Tìm giá trị lớn nhất của biểu thức
A= x/ (1+y2) +y/ (1+z2) + z/( 1+x2)