Chứng minh đẳng thức
\(\dfrac{\sqrt{a}-2}{a+2\sqrt{a}}+\dfrac{8}{a-4}=\dfrac{\sqrt{a}+2}{a-2\sqrt{a}}\) (với a > 0 ; a \(\ne\)4)
Chứng minh các đẳng thức sau:
c) \(\dfrac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\dfrac{2b}{b-a}=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\) ( với a,b > 0 và a \(\ne\) b )
\(\dfrac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\dfrac{2b}{b-a}\left(a,b>0;a\ne b\right)\\ =\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a}-\sqrt{b}\right)^2+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\\ =\dfrac{4\sqrt{ab}+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\\ =\dfrac{4\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
Tick plz
Ta có: \(\dfrac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\dfrac{2b}{b-a}\)
\(=\dfrac{a+2\sqrt{ab}+b-a+2\sqrt{ab}-b+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{4b+4\sqrt{ab}}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{4\sqrt{b}\left(\sqrt{b}+\sqrt{a}\right)}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{b}+\sqrt{a}\right)}\)
\(=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
Chứng minh đẳng thức sau:
\(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\left(\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\right)=\dfrac{\sqrt{a}-1}{\sqrt{a}}\) với a>0 và a khác 1
\(=\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-1}{1}\)
\(=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
a) Chứng minh đẳng thức sau:
\(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\left(\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\right)=\dfrac{\sqrt{a}-1}{\sqrt{a}}\) với a>0 và a khác 1
b) Tìm giá trị nhỏ nhất của A = \(x-2\sqrt{x+2}\)
a: \(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
\(=\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)
\(=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
Chứng minh các đẳng thức sau:
a) \(\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)=1-x\)
(Với \(x\ge0;x\ne1\))
b) \(\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}+\dfrac{a-b}{\sqrt{a}-b}=2\sqrt{a}\)
(Với a>0; b>0; \(a\ne b\))
Câu b bạn sửa lại đề
\(a,VT=\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\\ =\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x=VP\\ b,VT=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}+\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\\ =\sqrt{a}-\sqrt{b}+\sqrt{a}+\sqrt{b}=2\sqrt{a}=VP\)
a: \(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)
Chứng minh đẳng thức:
a) \(\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{a-b}=\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
( với a > hoặc bằng 0; b > hoặc bằng 0; a khác b )
a: \(=\dfrac{a+\sqrt{ab}-a+\sqrt{ab}-2b}{a-b}\)
\(=\dfrac{2\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a-b}\)
\(=\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
1. Rút gọn các biểu thức sau:
a, \(\dfrac{1}{4}\sqrt{180}+\sqrt{20}-\sqrt{45}+5\) ; b,\(3\sqrt{\dfrac{1}{3}}+\dfrac{1}{4}\sqrt{48}-2\sqrt{3}\)
c,\(\sqrt{2a}-\sqrt{18a^3}+4\sqrt{\dfrac{a}{2}}\) ; d,\(\sqrt{\dfrac{a}{1+2b+b^2}}.\sqrt{\dfrac{4a+8ab+4ab^2}{225}}\)
2. Chứng minh các hằng đẳng thức sau:
a, \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}=4\)
b,\(\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{a-b}=1\) với a≥0, b≤0, a≠ b
c, \(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)=1-a\) với a>0, a≠1
3. Chứng minh rằng giá trị của biểu thức M không phụ thuộc vào a:
M= \(\left(\dfrac{1}{2+2\sqrt{a}}+\dfrac{1}{2-2\sqrt{a}}-\dfrac{a^2+1}{1-a^2}\right)\left(1+\dfrac{1}{a}\right)\) với a >0; a≠ 1
Giúp em với e cần gấp lắm ạ
Chứng minh đẳng thức:
a) \(\dfrac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\dfrac{2b}{\sqrt{a}-\sqrt{b}}\)
b) \(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=\dfrac{-3}{2}\)
chứng minh đẳng thức: \(\left(\dfrac{\sqrt{a}}{1-\sqrt{a}}+\dfrac{\sqrt{a}}{1+\sqrt{a}}\right):\dfrac{2\sqrt{a}}{a-1}=-1\) (với a>0;a\(\ne\)1)
\(VT=\left(\dfrac{\sqrt{a}}{1-\sqrt{a}}+\dfrac{\sqrt{a}}{1+\sqrt{a}}\right):\dfrac{2\sqrt{a}}{a-1}\)
\(=\left(\dfrac{-\sqrt{a}\left(\sqrt{a}+1\right)+\sqrt{a}\left(\sqrt{a}-1\right)}{a-1}\right).\dfrac{a-1}{2\sqrt{a}}\)
\(=\left(\dfrac{-a-\sqrt{a}+a-\sqrt{a}}{a-1}\right).\dfrac{a-1}{2\sqrt{a}}=\dfrac{-2\sqrt{a}}{a-1}.\dfrac{a-1}{2\sqrt{a}}=-1=VP\)
(1,5 điểm) a) Chứng minh đẳng thức: $\left( 2-\dfrac{3+\sqrt{3}}{\sqrt{3}+1} \right).\left( 2+\dfrac{3-\sqrt{3}}{\sqrt{3}-1} \right)=1.$
b) Rút gọn biểu thức $A=\left( \dfrac{1}{x-2\sqrt{x}}+\dfrac{1}{\sqrt{x}-2} \right):\dfrac{\sqrt{x}+1}{x-4\sqrt{x}+4}$ với $x>0;$ $x\ne 4$.
a) Ta có: \(\left(2-\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\right)\left(2+\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\right)=\left[2-\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}+1}\right]\left[2+\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\right]\)\(=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=2^2-\left(\sqrt{3}\right)^2=4-3=1\) (đpcm)
b) Ta có \(A=\left(\dfrac{1}{x-2\sqrt{x}}+\dfrac{1}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}+1}{x-4\sqrt{x}+4}\)\(=\left[\dfrac{1}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}-2}\right].\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}+1}\)\(=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}.\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
Ta có đẳng thức : (2−3+√3√3+1).(2+3−√3√3−1)=1
xét vế trái ta có :(2−3+√3√3+1).(2+3−√3√3−1) =
a) ta co \(\left(2-\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\right).\left(2+\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\right)=\left(2-\sqrt{3}\right).\left(2+\sqrt{3}\right)=1\)
b) ta co \(A=\left(\dfrac{1}{x-2\sqrt{x}}+\dfrac{1}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}+1}{x-4\sqrt{x}+4}\)
\(A=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-2\right)^2}\)
\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-2\right)}.\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}+1}\)
\(A=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
Vay \(A=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)