Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngo quang minh
Xem chi tiết
NQQ No Pro
31 tháng 12 2023 lúc 16:01

Gọi ƯCLN(12n + 1;30n + 4) = d . Ta có :

  12n + 1 ⋮ d => 5(12n + 1) = 60n + 5 ⋮ d

  30n + 4 ⋮ d => 2(30n + 4) = 60n + 8 ⋮ d

=> (60n + 8) - (60n + 5) ⋮ d

=> 3 ⋮ d => d ∈ Ư(3) ∈ {1;3} ( Vì ƯCLN ko có số nguyên âm)

Mặt khác :12n + 1 không chia hết cho 3 (Vì 12n ⋮ 3 nhưng 1 ko chia hết cho 3)

=> d = 1 . Vậy 2 số sau là 2 số nguyên tố cùng nhau 

Jenny Jenny
Xem chi tiết
Nguyễn Quốc Việt
20 tháng 12 2016 lúc 21:52

Gọi d ƯC(12n + 1, 30n + 2} (d ∈ N)

Ta có:

(12n + 1)⋮d và (30n + 2)⋮d

=> 5(12n + 1)⋮d và 2(30n + 2)⋮d

=> (60n + 5)⋮d và (60n + 4)⋮d

=> [(60n + 5) - (60n + 4)]⋮d

=> 1⋮d

=> d ∈ Ư(1)

=> d ∈ {1}

=> ƯC(12n + 1, 30n + 2) = {1}

=> ƯCLN(12n + 1, 30n + 2) = 1

Vậy 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau với mọi số tự nhiên n.

 

Dương Quốc Quân
21 tháng 1 lúc 17:28

 

Lê Quốc Lâm
Xem chi tiết
Akai Haruma
30 tháng 6 lúc 18:35

Lời giải:

Gọi $d=ƯCLN(12n+1, 30n+2)$
$\Rightarrow 12n+1\vdots d; 30n+2\vdots d$

$\Rightarrow 5(12n+1)-2(30n+2)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

$\Rightarrow ƯCLN(12n+1, 30n+2)=1$

$\Rightarrow 12n+1, 30n+2$ là hai số nguyên tố cùng nhau.

An Vũ Khánh
Xem chi tiết
Nguyễn Thị Thương Hoài
15 tháng 12 2023 lúc 23:25

Gọi ước chung lớn nhất của 12n + 1 và 30n + 4 là d

Ta có:    \(\left\{{}\begin{matrix}12n+1⋮d\\30n+4⋮d\end{matrix}\right.\)

  ⇒        \(\left\{{}\begin{matrix}5.\left(12n+1\right)⋮d\\2.\left(30n+4\right)⋮d\end{matrix}\right.\)

  ⇒          \(\left\{{}\begin{matrix}60n+5⋮d\\60n+8⋮d\end{matrix}\right.\)

⇒ 60n + 8 - 60n - 5 ⋮ d

               3               ⋮ d

                d \(\in\) {1; 3}

Nếu d = 3 ⇒ 30n + 4 ⋮ 3

                 ⇒ 4 ⋮ 3 (loại)

    ⇒ d = 1hay 12n + 1 và 30n + 4 là hai số nguyên tố cùng nhau.

             

 

. Vũ Hương Giang
Xem chi tiết
Cao Tùng Lâm
21 tháng 11 2021 lúc 17:04

Gọi d là ƯCLN(12n+1 ; 30n+2)

=> 6(12n + 1 ) - 2(30n + 2 ) chia hết cho d

=> 2 chia hết cho d

Mà 12n+1 lẻ

=> d = 1

Vậy ........

Triệu Ngọc Huyền
21 tháng 11 2021 lúc 17:09

Gọi d là ước chung của 12n+1 và 30n+2

\(\Rightarrow\)12n+1 \(⋮\)d và 30n+2\(⋮\)d

\(\Rightarrow\)60n+5\(⋮\)d và 60n+4\(⋮\)d

\(\Rightarrow\)60n+5-60n-4\(⋮\)d

\(\Rightarrow\)1\(⋮\)\(\Rightarrow\)d=1

vậy 12n+1 và 30n+2 là hai số nguyên tố cùng nhau

Phạm Thị Hương Thu
Xem chi tiết
Darlingg🥝
3 tháng 1 2020 lúc 15:27

Gọi d là ƯCLN của (12n + 2 và 30n + 2).

Ta có:

=>12n + 1 - 30n + 2  chia hết cho d

=>5(12n+1) - 2(30n+2) chia hết cho d

=>60n + 5 - 60n + 4 chia hết cho d

=>1 chia hết cho d

=> 12n + 1 và 30n + 2 là 2 số nguyên tố cùng nhau

đpcm

Khách vãng lai đã xóa

Gọi d = ƯCLN ( 12n + 1 ; 30n + 2 )

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)    \(\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}}\)     \(\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Do đó : ƯCLN ( 12n + 1 ; 30n + 2 ) = 1 

Vậy 2 số \(12n+1\)\(;\)  \(30n+2\)là 2 số nguyên tố cùng nhau

Khách vãng lai đã xóa

TL : 

Ta gọi UCLN( 12n +1 , 30n + 2 ) là d 

Có : 

=> 12n + 1 chia hết cho d      30n+ 2 chia hết cho d

​Từ đó , suy ra 

5 . ( 12n + 1 ) chia hết cho d  => 60n + 5 chia hết cho d 

2 . ( 30n + 2 ) chia hết cho d  => 60n + 4 chia hết cho d

=> ( 60n + 5 ) - ( 60n + 4 ) chia hết cho d

                   1 chia hết cho d 

=> d = 1 

Vì d = 1 

Nên UCLN ( 12n + 1 , 30n + 2 ) là số nguyên tố cùng nhau 

Nếu chưa hiểu , bạn có thể tham khảo : 

https://www.youtube.com/watch?v=39J17UMT67A 

# Hok tốt 

Khách vãng lai đã xóa
Đỗ Ngọc Hà Giang
Xem chi tiết
Akai Haruma
18 tháng 11 2023 lúc 20:12

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

Akai Haruma
18 tháng 11 2023 lúc 20:15

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

Akai Haruma
18 tháng 11 2023 lúc 20:16

Bài 2:

c.

Gọi $d=ƯCLN(2n+1, n+1)$

$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.

d.

Gọi $d=ƯCLN(n+1, 3n+4)$

$\Rightarrow n+1\vdots d; 3n+4\vdots d$

$\Rightarrow 3n+4-3(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$

$\Rightarrow$ 2 số này nguyên tố cùng nhau.

Apple Nguyễn
Xem chi tiết
Phước Nguyễn
16 tháng 11 2015 lúc 9:29

Gọi \(d=ƯCLN\left(20n+3;30n+4\right)\)

Ta có: \(20n+3\) chia hết cho  \(d\) nên \(3\left(20n+3\right)\) chia hết cho \(d\)

và  \(30n+4\)chia hết cho \(d\) nên \(2\left(30n+4\right)\) chia hết cho \(d\)

Do đó: \(\left[3\left(20n+3\right)-2\left(30n+4\right)\right]\) chia hết cho \(d\)

\(\Leftrightarrow\left(60n+9-60n-8\right)\) chia hết cho  \(d\)

\(\Leftrightarrow1\) chia hết cho \(d\)  \(\Rightarrow d=1\)

Vậy, \(20n+3\) và  \(30n+4\) nguyên tố cùng nhau với \(n\in N\)

iamshayuri
Xem chi tiết
Nguyễn Thị Thương Hoài
24 tháng 12 2022 lúc 19:21

a,A= { x \(\in\) Z/ -1945 < x \(\le\) 2023}

  A = { -1944; -1943; -1942;  -1941;... ......;2020; 2021; 2022; 2023}

b, Tổng các phần tử có trong tập hợp A là:

B = -1944 + ( -1943) + (-1942 ) + (-1941) +....+ 2020 + 2021 + 2022 + 2023

Các cặp số đối nhau có trong tổng B là 1944 cặp mà hai số đối nhau có ytoongr bằng 0 vậy tổng B là:

B = 0 x 1944 + 1945 + 1946 +....+ 2020+2021+2022 + 2023

B = 0 + (2023+1945).{ ( 2023 - 1945 ) : 1 + 1} : 2

B = 156736

Bài 2 : CM hai số  12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau \(\forall\) n \(\in\) N

Gọi ước chung lớn nhất của 12n + 1 và 30n + 2 là d . Theo bài ra ta có :

\(\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)

 trừ vế cho vế ta được : 60n + 5 - (60n +4) \(⋮\) d

                                        60n + 5 - 60n - 4 \(⋮\) d

                                                                1 \(⋮\) d

                                                           \(\Rightarrow\) d = 1

Ước chung lớn nhất của 12n + 1 và 30n + 2 là 1 

Vậy  12n + 1 và  30n +2  là hai số nguyên tố cùng nhau (đpcm)