\(3\cdot\left(x-\dfrac{1}{2}\right)^3=81\)
1: \(\dfrac{2\cdot\left(x+2\right)}{3}-\dfrac{5\cdot\left(x-1\right)}{4}=\dfrac{3\cdot\left(5-x\right)}{2}-1\dfrac{1}{2}\cdot\left(2x+3\right)\)
\(\Leftrightarrow\dfrac{2}{3}x+\dfrac{4}{3}-\dfrac{5}{4}x+\dfrac{5}{4}=\dfrac{15}{2}-\dfrac{3}{2}x-\dfrac{3}{2}\left(2x+3\right)\)
\(\Leftrightarrow x\cdot\dfrac{-7}{12}+\dfrac{31}{12}=\dfrac{-15}{2}x+3\)
=>83/12x=5/12
hay x=5/83
1: rút gọn rồi tính
\(\left(-\dfrac{72}{40}-\dfrac{144}{60}-2\dfrac{1}{3}\right)\) : \(\left(\dfrac{45}{100}-\dfrac{25}{60}+-\dfrac{75}{25}\right)\)
2: tìm x: \(3\cdot\left(4-x\right)+\left(x+2\right)\cdot\left(1+2x\right)=7\cdot\left(1+x\right)-2x\cdot\left(2-x\right)\)
3: tìm x: \(\dfrac{2\cdot\left(1+x\right)}{3}-\dfrac{5\cdot\left(2-x\right)}{6}=1\dfrac{1}{3}-\dfrac{3\cdot\left(2x+3\right)}{4}-1\dfrac{1}{2}\cdot\left(x+1\right)\)
4: cho a= \(3+3^{2^3}+3^3+3^4+...+3^{360}\)
Bài 1:
\(\left(-\dfrac{72}{40}-\dfrac{144}{60}-2\dfrac{1}{3}\right):\left(\dfrac{45}{100}-\dfrac{25}{60}+-\dfrac{75}{25}\right)\)
\(=\left(-\dfrac{9}{5}-\dfrac{12}{5}-\dfrac{7}{3}\right):\left(\dfrac{9}{20}-\dfrac{5}{12}+-3\right)\)
\(=\left(-\dfrac{27}{15}-\dfrac{36}{15}-\dfrac{21}{15}\right):\left(\dfrac{27}{60}-\dfrac{25}{60}+-3\right)\)
\(=\left(-\dfrac{28}{5}\right):\left(-\dfrac{89}{30}\right)\)
\(=\left(-\dfrac{28}{5}\right).\left(-\dfrac{30}{89}\right)\)
\(=\dfrac{168}{89}\)
cho đa thức \(f\left(x\right)=4\cdot x^2+3x+1\); \(g\left(x\right)=3x^2-2x+1\); \(k\left(x\right)=7\cdot x^2-35x+42\)
a) tính f(x)-g(x)=h(x)
b) tính nghiệm của h(x) và k(x)
c) tìm gia trị của đa thức h(x) biết:
\(\left(x^2-9\right)^{2021}=\left(\frac{3}{4}-81\right)\cdot\left(\frac{3^2}{5}-81\right)^2\cdot\left(\frac{3^2}{6}-81\right)^3\cdot\cdot\cdot\left(\frac{3^{2020}}{2023}-81\right)^{2020}\)
a, Ta có : \(f\left(x\right)-g\left(x\right)=h\left(x\right)\)hay
\(4x^2+3x+1-3x^2+2x-1=h\left(x\right)\)
\(\Rightarrow h\left(x\right)=x^2+5x\)
b, Đặt \(h\left(x\right)=x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy nghiệm của đa thức h(x) là x = -5 ; x = 0
Đặt \(k\left(x\right)=7x^2-35x+42=0\)
\(\Leftrightarrow7\left(x^2+5x+6\right)=0\)
\(\Leftrightarrow7\left(x^2+2x+3x+6\right)=0\Leftrightarrow7\left(x+2\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}\)
Vậy nghiệm của đa thức k(x) là x = -3 ; x = -2
xin lỗi mọi người 1 tý nha cái phần c) ý ạ đề thì vậy như thế nhưng có cái ở phần biểu thức ở dưới ý là
\(\left(\frac{3^2}{6}-81\right)^3\) chuyển thành \(\left(\frac{3^3}{6}81\right)^3\)
bị sai mỗi thế thôi ạ mọi người giúp em với ạ
là \(\left(\frac{3^3}{6}-81\right)^3\)ạ
Giải phương trình
\(1,\dfrac{x^2-2x-3}{x-1}+\dfrac{x^2-8x+20}{x-4}=\dfrac{x^2-4x+6}{x-2}+\dfrac{x^2-6x+12}{x-3}\)
\(2,\left(1+\dfrac{1}{1\cdot3}\right)\cdot\left(1+\dfrac{1}{2\cdot4}\right)\cdot\left(1+\dfrac{1}{3\cdot5}\right)\cdot...\cdot[1+\dfrac{1}{x\cdot\left(x+2\right)}]=\dfrac{31}{16}\left(x\in N\right)\)
Tìm $x$, biết :
a) $\left(\dfrac{1}{2}+1,5\right) \cdot x=\dfrac{1}{5}$
b) $\left(-1 \dfrac{3}{5}+x\right): \dfrac{12}{13}=2 \dfrac{1}{6}$
c) $\left(x: 2 \dfrac{1}{3}\right) \cdot \dfrac{1}{7}=\dfrac{-3}{8}$
d) $\dfrac{-4}{7} \cdot x+\dfrac{7}{5}=\dfrac{1}{8}:\left(-1 \dfrac{2}{3}\right)$
\(a)\left(\dfrac{1}{2}+1,5\right)x=\dfrac{1}{5}\)
\(\Rightarrow2x=\dfrac{1}{5}\)
\(\Rightarrow x=\dfrac{1}{10}\)
\(b)\left(-1\dfrac{3}{5}+x\right):\dfrac{12}{13}=2\dfrac{1}{6}\)
\(\Leftrightarrow-\dfrac{8}{5}+x=\dfrac{13}{6}.\dfrac{12}{13}\)
\(\Leftrightarrow-\dfrac{8}{5}+x=2\)
\(\Leftrightarrow x=\dfrac{18}{5}\)
\(c)\left(x:2\dfrac{1}{3}\right).\dfrac{1}{7}=-\dfrac{3}{8}\)
\(\Leftrightarrow x:\dfrac{7}{3}=-\dfrac{3}{8}:\dfrac{1}{7}\)
\(\Leftrightarrow x=-\dfrac{21}{8}.\dfrac{7}{3}\)
\(\Leftrightarrow x=-\dfrac{49}{8}\)
\(d)-\dfrac{4}{7}x+\dfrac{7}{5}=\dfrac{1}{8}:\left(-1\dfrac{2}{3}\right)\)
\(\Leftrightarrow-\dfrac{4}{7}x+\dfrac{7}{5}=-\dfrac{3}{40}\)
\(\Leftrightarrow-\dfrac{4}{7}x=-\dfrac{59}{40}\)
\(\Leftrightarrow x=\dfrac{413}{160}\)
1/S=\(\left(1+\dfrac{1}{2}\right)\cdot\left(1+\dfrac{1}{3}\right)\cdot\left(1+\dfrac{1}{4}\right)\cdot...\cdot\left(1+\dfrac{1}{100}\right)\)
2/B=\(\left(1-\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{4}\right)\cdot...\cdot\left(1-\dfrac{1}{2007}\right)\)
3/C=\(\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot...\cdot\dfrac{100^2}{99\cdot101}\)
1: \(S=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{101}{100}=\dfrac{101}{2}\)
2: \(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2006}{2007}=\dfrac{1}{2007}\)
1:tìm x
a; \(3x+\left|x-2\right|=8\)
b; \(5-\left|x-1\right|=4\)
2:tìm x
\(5\cdot\left(x-2\right)-4\cdot\left(1-3x\right)=\left|3-7\right|+2\cdot\left(1+2x\right)\)
3: tìm x
\(\left(x-2\right)\cdot\left(2x+1\right)-3\cdot\left(x+2\right)=4-5\cdot\left(1-x\right)\)
4:tìm x
\(1\dfrac{1}{2}\cdot\left(x-2\right)-\dfrac{x-5}{3}=3\dfrac{1}{3}\cdot\left(1-2x\right)-\dfrac{5\cdot\left(x+1\right)}{6}\)
5: tìm x
\(\left(x-3\right)\cdot\left(1-x\right)+\left(x-2\right)^2=\left(1-x\right)^2-2\cdot\left(1+x\right)\)
6: tìm x
\(\left(2x-1\right)^2-3\cdot\left(x+2\right)^2=4\cdot\left(x-2\right)-5\cdot\left(x-1\right)^2\)
1. a, 3x + |x - 2| = 8
<=> |x - 2| = 8 - 3x
Xét 2 TH :
TH1: x - 2 = 8 - 3x
<=> x + 3x = 8 + 2
<=> 4x = 10
<=> x = \(\dfrac{5}{2}\) (thỏa mãn)
TH2: x - 2 = -(8 - 3x)
<=> x - 2 = -8 + 3x
<=> -2 + 8 = 3x - x
<=> 6 = 2x
<=> x = 3 (thỏa mãn)
b, 5 - |x - 1| = 4
<=> |x - 1| = 1
<=> \(\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\) (thỏa mãn)
@Nguyễn Hoàng Vũ
2. 5.(x - 2) - 4.(1 - 3x) = |3 - 7| + 2.(1 + 2x)
<=> 5x - 10 - 4 + 12x = 4 + 2 + 4x
<=> 17x - 14 = 6 + 4x
<=> 17x - 4x = 6 + 14
<=> 13x = 20
<=> x = \(\dfrac{20}{13}\) (thỏa mãn)
@Nguyễn Hoàng Vũ
4. 1\(\dfrac{1}{2}\).(x - 2) - \(\dfrac{x-5}{3}\) = 3\(\dfrac{1}{3}\).(1 - 2x) - \(\dfrac{5.\left(x+1\right)}{6}\)
<=> \(\dfrac{3}{2}\).(x - 2) - \(\dfrac{x-5}{3}\) = \(\dfrac{10}{3}\).(1 - 2x) - \(\dfrac{5x+5}{6}\)
<=> \(\dfrac{3}{2}x-3-\dfrac{x}{3}+\dfrac{5}{3}=\dfrac{10}{3}-\dfrac{20}{3}x-\dfrac{5x}{6}-\dfrac{5}{6}\)
<=> \(\dfrac{3}{2}x-\dfrac{x}{3}+\dfrac{20}{3}x-\dfrac{5x}{6}=\dfrac{10}{3}-\dfrac{5}{6}-3+\dfrac{5}{3}\)
<=> 7x = \(\dfrac{7}{6}\)
<=> x = \(\dfrac{1}{6}\)
@Nguyễn Hoàng Vũ
Câu 1:
a, Tính M =\(3\dfrac{1}{417}\cdot\dfrac{1}{762}-\dfrac{1}{139}\cdot4\dfrac{761}{762}-\dfrac{4}{417\cdot762}+\dfrac{5}{139}\)
b, Tính \(\left(\dfrac{3}{4}-81\right)\left(\dfrac{3^2}{5}-81\right)\left(\dfrac{3^3}{6}-81\right)...\left(\dfrac{3^{2000}}{2003}-81\right)\)
Câu 2: Cho \(\left(a+3\right)\left(b-4\right)-\left(a-3\right)\left(b+4\right)=0\) . Chứng minh \(\dfrac{a}{3}=\dfrac{b}{4}\).
Câu 2
(a+3)(b-4)-(a-3)(b+4)=0
=>ab-4a+3b-12-ab-4a+3b+12=0
=>-8a=-6b
=>a/b=3/4
=>a/3=b/4
Tính:
\(N=\left(0,25\right)^{-1}\cdot\left(\dfrac{1}{4}\right)^{-2}\cdot\left(\dfrac{4}{3}\right)^{-2}\cdot\left(\dfrac{5}{4}\right)^{-1}\cdot\left(\dfrac{2}{3}\right)^{-3}\)\(N=\left(0,25\right)^{-1}\cdot\left(\dfrac{1}{4}\right)^{-2}\cdot\left(\dfrac{4}{3}\right)^{-2}\cdot\left(\dfrac{5}{4}\right)^{-1}\cdot\left(\dfrac{2}{3}\right)^{-3}\)
\(N=4\cdot16\cdot\dfrac{9}{16}\cdot\dfrac{4}{5}\cdot\dfrac{27}{8}=4\cdot9\cdot\dfrac{4}{5}\cdot\dfrac{27}{8}\)
\(=\dfrac{16}{5}\cdot\dfrac{243}{8}=\dfrac{486}{5}\)