Câu 4: a, Vẽ y = 2/3x + 2 (d1) y = 2x+2 trên cùng mặt phẳng tọa độ b, Gọi A,B là giao điểm d1 và d2 với trục Ox và giao d1 với d2 là C : Tìm toạ độ giao điểm A,B,C
Cho hàm số y=4-2x (d1) và y=3x+1 (d2) a) Vẽ (d1) và (d2) trên cùng mặt phẳng toạ độ b) Gọi A là giao điểm của (d1) và (d2). Tìm toạ độ giao điểm A c) Tính góc tạo bởi (d1) với trục hoành Tính góc tạo bởi (d2) với trục hoành
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}4-2x=3x+1\\y=3x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{5}\\y=\dfrac{9}{5}+1=\dfrac{14}{5}\end{matrix}\right.\)
Cho hai đường thẳng: (d1):y=1/2x+2 và (d2):y=-x+2
a) vẽ (d1) và (d2) trên cùng một hệ trục toạ độ Oxy
b) gọi A là giao điểm của (d1) với trục hoành. Tìm toạ độ điểm A
c) gọi B là giao điểm của (d2) với trục tung. Tìm toạ đồ điểm B
d)gọi C là giao điểm của (d1) và (d2). Tìm toạ độ điểm C
Mông các bạn giải giúp mình gấp với ạ :3
a/ bạn tự làm
b/ \(\Rightarrow y=0\Rightarrow\dfrac{1}{2}x+2=0\) giải PT tìm hoành độ x
c/ \(\Rightarrow x=0\Rightarrow y=0+2=2\)
d/ \(\Rightarrow\dfrac{1}{2}x+2=-x+2\) Giải PT tìm hoành độ x của C rồi thay vào d1 hoặc d2 để tìm tung độ y của C
Cho hai hàm số : y = -2x + 4 (d1)
y = x + 1 (d2)
a. Vẽ đồ thị hai hàm số trên cùng một mặt phẳng tọa độ
b. gọi A là tọa độ giao điểm của 2 đường thẳng.B , C là giao điểm của (d1) và (d2) với trục hoành. Tìm tọa độ A,B,C.
\(b,\) Tọa độ giao điểm 2 đường thẳng là:
\(\left\{{}\begin{matrix}y=-2x+4\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1=-2x+4\\y=x+1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\Leftrightarrow A\left(1;2\right)\)
Tọa độ giao điểm 2 đường thẳng với trục hoành là
\(\left\{{}\begin{matrix}y=0\\\left[{}\begin{matrix}y=-2x+4\\y=x+1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\\left[{}\begin{matrix}4-2x=0\\x+1=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow B\left(2;0\right),C\left(-1;0\right)\)
Bài 1: Cho (d1): y = 3x + 2 (d2): y = x – 2 a) Tìm tọa độ giao điểm của (d1) và (d2) với trục hoành b) Tìm tọa độ giao điểm của (d1) và (d2) với trục tung c) Vẽ (d1) và (d2) trên cùng một hệ trục tọa độ Oxy d) Tìm tọa độ giao điểm của (d1) và (d2)
\(b,\) PT hoành độ giao điểm: \(3x+2=x-2\Leftrightarrow x=-2\Leftrightarrow y=-4\Leftrightarrow A\left(-2;-4\right)\)
Vậy \(A\left(-2;-4\right)\) là tọa độ giao điểm
cho hàm số y=3x-4 có đồ thị d1, hàm số y= 4x-6 có đồ thị d2
a) vẽ d1 và d2 trên cùng một hệ trục tọa độ. tìm giao điểm của d1 và d2 bằng phép toán
b) gọi A ,B là giao điểm của d1 với Ox, Oy. Tìm tọa độ điểm A và B
c) tính diện tinh tam giác OAB và độ dài đoạn thẳng AB
D) cho đường thẳng d3 : y = ax + 2a+ 1 tìm a để d3 song song với đường d2
ai giúp mình với ạ !!
a: Phương trình hoành độ giao điểm là:
3x-4=4x-6
\(\Leftrightarrow3x-4x=-6+4\)
\(\Leftrightarrow-x=-2\)
hay x=2
Thay x=2 vào \(\left(d1\right)\), ta được:
\(y=3\cdot2-4=2\)
b: Thay y=0 vào \(\left(d1\right)\), ta được:
\(3x-4=0\)
hay \(x=\dfrac{4}{3}\)
Thay x=0 vào \(\left(d1\right)\), ta được:
\(y=3\cdot0-4=-4\)
Vậy: \(A\left(\dfrac{4}{3};0\right);B\left(0;-4\right)\)
Cho (d1): y=2x và (d2):y= -1/2x + 5 1/ vẽ d1 và d2 trên cùng mặt phẳng tọa độ 2/ xác định tọa độ giao điểm A của d1 và d2 3/ gọi giao điểm của d2 với Ox là B. Tính các góc của tam giác AOB 4/ tính chu vi và diện tích của tam giác AOB
1) \(\left\{{}\begin{matrix}\left(d_1\right):y=2x\\\left(d_2\right):y=-\dfrac{1}{2}x+5\end{matrix}\right.\)
2) Theo đồ thi ta có :
\(\left(d_1\right)\cap\left(d_2\right)=A\left(2;4\right)\)
3) \(\left(d_2\right)\cap Ox=B\left(a;0\right)\)
\(\Leftrightarrow-\dfrac{1}{2}a+5=0\)
\(\Leftrightarrow\dfrac{1}{2}a=5\)
\(\Leftrightarrow a=10\)
\(\Rightarrow\left(d_2\right)\cap Ox=B\left(10;0\right)\)
4) \(OA=\sqrt[]{\left(2-0\right)^2+\left(4-0\right)^2}=\sqrt[]{20}=2\sqrt[]{5}\)
\(OB=\sqrt[]{\left(10-0\right)^2+\left(0-0\right)^2}=\sqrt[]{10^2}=10\)
\(AB=\sqrt[]{\left(10-2\right)^2+\left(0-4\right)^2}=\sqrt[]{80}=4\sqrt[]{5}\)
Ta thấy :
\(OA^2+AB^2=20+80=OB^2=100\)
\(\Rightarrow\Delta OAB\) vuông tại A
\(\Rightarrow\widehat{OAB}=90^o\)
\(sin\widehat{AOB}=\dfrac{AB}{OB}=\dfrac{4\sqrt[]{5}}{10}=\dfrac{2\sqrt[]{5}}{5}\)
\(\Rightarrow\widehat{AOB}\sim63,43^o\)
\(\Rightarrow\widehat{OBA}=90^o-63,43^o=26,57^o\)
5) Chu vi \(\Delta OAB\) :
\(AB+OA+OB=4\sqrt[]{5}+2\sqrt[]{5}+10=10\sqrt[]{5}+10=10\left(\sqrt[]{5}+1\right)\left(đvmd\right)\)
Diện tích \(\Delta OAB\) :
\(\dfrac{1}{2}AB.OA=\dfrac{1}{2}.4\sqrt[]{5}.2\sqrt[]{5}=20\left(đvdt\right)\)
a) Vẽ đồ thị các hàm số y=-x+4(d1) và y=x-4(d2) trên cùng một mặt phẳng tọa độ.
b) Gọi A, B lần lượt là giao điểm của các đường thẳng (d1);(d2) với trục tung và giao điểm của 2 đường thẳng là C. Tìm tọa độ giao điểm A,B,C.
c) Tính S tam giác ABC
b) Phương trình hoành độ giao điểm của (D1) và (d2) là:
-x+4=x-4
\(\Leftrightarrow-2x=-8\)
hay x=4
Thay x=4 vào (d1), ta được:
y=-4+4=0
Thay x=0 vào (d1), ta được:
\(y=-0+4=4\)
Thay x=0 vào (d2), ta được:
\(y=0-4=-4\)
Vậy: A(0;4); B(0;-4); C(4;0)
Trên mặt phẳng tọa độ Oxy cho hai đường thẳng :
(d1) : y = -2x +4 và (d2) : y = \(\dfrac{1}{2}\)x + b ( b>0)
Gọi A là giao điểm của (d1) với (d2) ; B,C lần lượt là giao điểm của Ox với (d1), (d2) . Tìm giá trị của b để AO là tia phân giác của góc BAC
cho 3 đường thẳng d1:y=2x-2, d2:y=-4/3x-2 và d3:y=1/3+3
a) vẽ các đg thẳng d1,d2,d3 trên cùng 1 mặt phẳng tọa độ
b) gọi giao điểm đg thẳng d3 với d1 và d2 theo thứ tự là A, B. Hãy tìm tọa độ của A, B
b, PT giao điểm (d3) và (d1) là \(\dfrac{1}{3}x+3=2x-2\Leftrightarrow\dfrac{5}{3}x=5\Leftrightarrow x=3\Leftrightarrow y=4\Leftrightarrow A\left(3;4\right)\)
PT giao điểm (d3) và (d2) là \(\dfrac{1}{3}x+3=-\dfrac{4}{3}x-2\Leftrightarrow\dfrac{5}{3}x=-5\Leftrightarrow x=-3\Leftrightarrow y=2\Leftrightarrow B\left(-3;2\right)\)