Bài 1. Cho đường tròn (O), dây cung CD. Qua O vẽ OH ^ CD tại H, cắt tiếp tuyến tại C của đường tròn (O) tại M. Chứng minh MD là tiếp tuyến của (O).
Bài 2. Cho nửa đường tròn tâm O, đường kính AB. Vẽ các tia Ax ^ AB và By ^ AB ở cùng phía nửa đường tròn. Gọi I là một điểm trên nửa đường tròn. Tiếp tuyến tại I cắt Ax tại C và By tại D. Chứng minh rằng AC + BD = CD.
Mọi người ơi giúp mình gấp 2 bài này với
Bài 1: Cho nửa đường tròn tâm O đường kính AB, tiếp tuyến Ax với nửa đường tròn. Qua C thuộc nửa đường tròn kẻ tiếp tuyến với nửa đường tròn cắt Ax tại M. Kẻ CH vuông góc AB cắt BM tại I. CM: IC=IH
Bài 2: Cho nửa đường tròn tâm O đường kính AB. Từ A và B vẽ tiếp tuyến Ax, By thuộc nửa đường tròn. Lấy M thuộc nửa đường tròn, vẽ tiếp tuyến thứ ba cắt Ax tại C, By tại D. BM giao Ax tại A', AM giao By tại B'. CM:
a,△A'AB đồng dạng với △ABB' và từ đó suy ra AA'.BB'=AB2
b,CA=CA' DB=DB'
c,B'A', DC, AB đồng quy
Mong mọi người vẽ hình cùng lời giải cho mình với ạ
Cảm ơn mọi người nhiều
Bài Tập: Cho nửa đường tròn (O;R) đường kính AB. Trên cùng một nửa mặt phẳng bờ AB chứa nửa đường tròn (O), vẽ hai tiếp tuyến Ax, By của nửa đường tròn. Từ điểm M thuộc nửa đường tròn (O) vẽ tiếp tuyến thứ ba cắt Ax, By lần lượt tại P và Q. a) Chứng minh bốn điểm A, P, M, O cùng nằm trên một đường tròn. b) AM cắt OP tại điểm I, BM cắt OQ tại điểm K. Chứng minh MIOK là hình chữ nhật và tính tích AP.BQ theo R. c) Gọi N là giao điểm của BP và IK. Chứng minh rằng khi M di chuyển trên nửa đường tròn (M khác A; B) thì tỉ số Sabn/ Sabm luôn không đổi.
a: Xét tứ giác PAOM có
góc PAO+góc PMO=180 độ
=>PAOM là tứ giác nội tiếp
b: Xét (O) có
PA,PM là tiếp tuyến
nên PA=PM và OP là phân giác của góc MOA(1)
mà OA=OM
nên OP là trung trực của AM
=>OP vuông góc AM
Xét (O) có
QM,QB là tiếp tuyến
nên QM=QB và OQ là phân giác của góc MOB(2)
mà OM=OB
nên OQ là trung trực của MB
=>OQ vuông góc MB tại K
Từ (1), (2) suy ra góc POQ=1/2*180=90 độ
Xét tứ giác MIOK có
góc MIO=góc MKO=góc IOK=90 độ
=>MIOK là hình chữ nhật
Xét ΔOPQ vuông tại O có OM là đường cao
nên MP*MQ=OM^2=R^2
=>AP*QB=OM^2=R^2 ko đổi
Bài 2:
Cho nửa đường tròn (O; R) đường kính AB, kẻ tiếp tuyến Ax, By với nửa đường tròn (Ax, By nằm cùng nửa mặt phẳng bờ AB). Tiếp tuyến tại I với nửa đường tròn (O)
(I khác A, B) cắt Ax, By lần lượt tại M, N.
a) Chứng minh tứ giác AMIO nội tiếp và AM + BN = MN
b) Chứng minh góc MON = 900 và AM. BN = R2.
c) Gọi H là giao điểm của AN và BM, tia IH cắt AB tại K. Chứng minh H là trung điểm của IK
d) Cho AB = 5cm, diện tích tứ giác ABNM là 20cm2. Tính diện tích của tam giác AIB.
a: Xét tứ giác AMIO có
\(\widehat{MAO}+\widehat{MIO}=180^0\)
Do đó; AMIO là tứ giác nội tiếp
Xét (O) có
MI là tiếp tuyến
MA là tiếp tuyến
Do đó: MI=MA và OM là tia phân giác của góc IOA(1)
Xét (O) có
NI là tiếp tuyến
NB là tiếp tuyến
Do đó: NI=NB và ON là tia phân giác của góc IOB(2)
Ta có: MI+NI=MN
nên MN=MA+NB
b: Từ (1) và (2) suy ra \(\widehat{MON}=\widehat{MOI}+\widehat{NOI}=\dfrac{1}{2}\left(\widehat{IOA}+\widehat{IOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)
Xét ΔMON vuông tại O có OI là đường cao
nên \(IM\cdot IN=OI^2\)
hay \(AM\cdot BN=R^2\)
đề bài: Cho nửa đường tròn (O,R), AB đường kính.Trên nửa mặt phẳng bờ AB chứa nửa đường tròn, kẻ tiếp tuyến Bx với (O).Điểm M di động trên tia Bx, AM cắt (O) tại N(N#A). Gọi E là trung điểm đoạn AN.
CMR: 4 điểm E,O,B,M cùng thuộc 1 đường tròn. Em xin cảm ơn các thầy cô và mong các thầy cô có thể chỉ cho em cách vẽ hình bài này và phương pháp làm bài cm 4 điểm cùng thuộc 1 đường tròn ạ(Em mới học hết chương 2 đường tròn lớp 9 ạ!)
Bài : Cho nửa đường tròn t hat a m O , đường kinh = 2R Trên nửa mặt phẳng bờ AB có chứa nửa đường tròn,vẽ các tiếp tuyến Ax và By với nửa đường tròn . Từ điểm D trên tia Ax vẽ tiếp tuyến DC với nửa đường tròn (O) cắt tỉa By tại E (C là tiếp điểm).
a) Chứng minh bốn điểm A,D,O,C cùng thuộc một đường tròn.b ) Chứng minh BE.DA=R^ 2 c) BC cắt OE tại M, AC cắt OD tại N. Vẽ CH vuông góc với AB tại H, CH cắt MN tại I. Chứng minh là trung điểm CH và A,I,E thẳng hàng.giúp mình câu C với ạ:(c: Gọi giao điểm của BC với Ax là K
BC\(\perp\)AC tại C
=>AC\(\perp\)BK tại K
=>ΔACK vuông tại C
\(\widehat{DKC}+\widehat{DAC}=90^0\)(ΔACK vuông tại C)
\(\widehat{DCK}+\widehat{DCA}=\widehat{KCA}=90^0\)
mà \(\widehat{DCA}=\widehat{DAC}\)(ΔDAC cân tại D)
nên \(\widehat{DKC}=\widehat{DCK}\)
=>DC=DK
mà DC=DA
nên DK=DA
=>D là trung điểm của AK
CH\(\perp\)AB
AK\(\perp\)AB
Do đó: CH//AK
Xét ΔOKD có CI//KD
nên \(\dfrac{CI}{KD}=\dfrac{OI}{OD}\left(1\right)\)
Xét ΔOAD có IH//AD
nên \(\dfrac{IH}{AD}=\dfrac{OI}{OD}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{CI}{KD}=\dfrac{IH}{AD}\)
mà KD=AD
nên CI=IH
=>I là trung điểm của CH
Bài 3: Cho nửa đường tròn tâm O đường kính AB =2 R. Lấy một điểm C trên nửa đường tròn sao cho góc ABC = 300. Gọi P là giao điểm của tiếp tuyến tại A với nửa đường tròn và đường thẳng BC.
a/ Chứng minh PA2 = PC.PB
b/ Từ P vẽ tiếp tuyến thứ hai với đường tròn O tại M, PO cắt AM tại N. Tính PA, PO, AM theo R
c/ Vẽ MH vuông góc với AB tại H. Gọi I là giao điểm của PQ và MH. Tính NI theo R
a: Xét (O) có
ΔACB nội tiếp đường tròn
AB là đường kính
Do đó: ΔACB vuông tại C
Xét ΔPAB vuông tại A có AC là đường cao ứng với cạnh huyền PB, ta được:
\(PA^2=PC\cdot PB\)
Bài 2: Cho nửa đường tròn tâm O, đường kính AB. Kẽ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB. Từ điểm M trên nửa đường tròn kẽ tiếp tuyến thứ ba với đường tròn, nó cắt Ax và By lần lượt tại C và D.
a/ Chứng minh: Tam giác COD là tam giác vuông.
b/ Chứng minh: MC.MD=OM2.
c/ Cho biết OC=BA=2R, tính AC và BD theo R.
giup minh voi ah
Bài IV (3,5 điểm) Cho nửa đường tròn tâm O, bán kính R, đường kính AB. Điểm C thuộc đoạn AB (C khác B;A). Trên cùng nửa mặt phẳng bờ AB có chứa nửa (O;R). Vẽ nửa đường tròn tâm I, đường kính AC và nửa đường tròn tâm J, đường kính BC. Qua C kẻ đường thẳng vuông góc với AB cắt (O;R) tại D. DA cắt nửa đường tròn tâm I tại M, DB cắt nửa đường tròn tâm J tại N
1) Chứng minh rằng: Tứ giác MDNC là hình chữ nhật
2) Chứng minh rằng: Tứ giác AMNB nội tiếp.
3) Chứng minh rằng: OD vuông góc MN
4) Tìm vị trí của C trên AB để bán kính đường tròn ngoại tiếp tứ giác AMNB lớn nhất.
Bài 5. (3,0 điểm) Cho nửa đường tròn (O;R) đường kính AB. Trên nửa mặt phẳng bờ AB có chứa nữa đường tròn, kẻ tiếp tuyến Ax với nửa đường tròn đó. Lấy điểm E thuộc tia A*( (AE > R) . qua E kẻ tiếp tuyến ED với (O;R) (D là tiếp điểm). BE cắt nửa đường tròn (O;R) a) Chứng minh AE^ 2 =EK.EB c) Gọi H là giao điểm của AD với OE. Chứng minh 4 điểm O, H, B, K củng thuộc một một đường tròn. b) Chứng minh OE//BD