Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lap2009
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 4 2023 lúc 0:06

=>(x-2023)[(x-2023)^21-1]=0

=>x-2023=0 hoặc x-2023=1

=>x=2023 hoặc x=2024

Lê Hà Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 7 2023 lúc 0:14

2020/2021<1

2021/2022<1

2022/2023<1

2023/2020=1+1/2020+1/2020+1/2020>1+1/2021+1/2022+1/2023

=>B>2020/2021+2021/2022+2022/2023+1/2021+1/2022+1/2023+1=4

Nguyễn Thanh Bình
Xem chi tiết
HT.Phong (9A5)
6 tháng 12 2023 lúc 7:22

\(5x^2+2y^2+6xy-8x-4y+4=0\)

\(\Leftrightarrow4x^2+x^2+y^2+y^2+2xy+4xy-8x-4y+4=0\)

\(\Leftrightarrow\left(4x^2+y^2+4+4xy-8x-4y\right)+\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow\left[\left(2x\right)^2+4xy+y^2-4\left(2x+y\right)+2^2\right]+\left(x+y\right)^2=0\)

\(\Leftrightarrow\left[\left(2x+y\right)^2-2\cdot\left(2x+y\right)\cdot2+2^2\right]+\left(x+y\right)^2=0\)

\(\Leftrightarrow\left(2x+y-2\right)^2+\left(x+y\right)^2=0\)

Ta có: \(\left\{{}\begin{matrix}\left(2x+y-2\right)^2\ge0\forall x,y\\\left(x+y\right)^2\ge0\forall x,y\end{matrix}\right.\)  

\(\Rightarrow\left(2x+y-2\right)^2+\left(x+y\right)^2\ge0\forall x,y\)

Mặt khác: \(\left(2x+y-2\right)^2+\left(x+y\right)^2=0\) 

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}2x+y-2=0\\x+y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\cdot\left(-y\right)+y-2=0\\x=-y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2y+y-2=0\\x=-y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-y=2\\x=-y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=2\end{matrix}\right.\) 

Thay x,y vào P ta có:

\(P=2^{2023}+\left(-2\right)^{2023}=2^{2023}-2^{2023}=0\)

Vậy: ... 

Lê Hà My
Xem chi tiết
Huỳnh Như Ý
26 tháng 4 2022 lúc 15:41
Miug
Phạm Ngọc Hà
19 tháng 4 lúc 22:41

...

Đoàn Minh Vương
Xem chi tiết
Nguyễn Thị Thương Hoài
16 tháng 12 2023 lúc 13:57

olm sẽ hướng dẫn em làm bài này như sau:

Bước 1: em giải phương trình tìm; \(x\); y

Bước 2:  thay\(x;y\) vào P

(\(x-1\))2022 + |y + 1| = 0

Vì (\(x-1\))2022 ≥ 0 ∀ \(x\); |y + 1| ≥ 0  ∀ y

⇒ (\(x\) - 1)2022  + |y + 1| = 0

⇔ \(\left\{{}\begin{matrix}\left(x-1\right)^{2022}=0\\y+1=0\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\) (1) 

Thay (1) vào P ta có:

12023.(-1)2022 : )(2.1- 1)2022 +  2023

=  1 + 2023

= 2024

Phạm phi
16 tháng 12 2023 lúc 15:07

a+b+c=12

Đoàn Minh Vương
16 tháng 12 2023 lúc 19:30

mọi người hãy trình bầy rõ ra nhé 
em ko hiểu nên nếu nói tắt sẽ ko thể tiếp thu

Đinh Quân Huấn THCS⊗
Xem chi tiết
Ng Ngọc
13 tháng 2 2023 lúc 22:35

\(A=\dfrac{2024^{2023}+1}{2024^{2024}+1}\)

\(2024A=\dfrac{2024^{2024}+2024}{2024^{2024}+1}=\dfrac{\left(2024^{2024}+1\right)+2023}{2024^{2024}+1}=\dfrac{2024^{2024}+1}{2024^{2024}+1}+\dfrac{2023}{2024^{2024}+1}=1+\dfrac{2023}{2024^{2024}+1}\)

\(B=\dfrac{2024^{2022}+1}{2024^{2023}+1}\)

\(2024B=\dfrac{2024^{2023}+2024}{2024^{2023}+1}=\dfrac{\left(2024^{2023}+1\right)+2023}{2024^{2023}+1}=\dfrac{2024^{2023}+1}{2024^{2023}+1}+\dfrac{2023}{2024^{2023}+1}=1+\dfrac{2023}{2024^{2023}+1}\)

Vì \(2024>2023=>2024^{2024}>2024^{2023}\)

\(=>2024^{2024}+1>2024^{2023}+1\)

\(=>\dfrac{2023}{2024^{2023}+1}>\dfrac{2023}{2024^{2024}+1}\)

\(=>A< B\)

 

\(#PaooNqoccc\)

Nguyễn Thu Trang
Xem chi tiết
Nguyễn Thảo Vân
Xem chi tiết
Akai Haruma
4 tháng 11 2023 lúc 22:31

Lời giải:
$a=1+5+5^2+5^3+...+5^{2022}+5^{2023}$

$5a=5+5^2+5^3+5^4+....+5^{2023}+5^{2024}$

$\Rightarrow 5a-a=5^{2024}-1$

$\Rightarrow 4a=5^{2024}-1$

$\Rightarrow 4a+1=5^{2024}\vdots 5^{2023}$ (đpcm)

Lê Trần Nam Khánh
Xem chi tiết